$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

북극 지의류 Stereocaulon spp로부터 분리한 여러 미생물의 항산화 성질
Antioxidant Properties of Various Microorganisms Isolated from Arctic Lichen Stereocaulon spp. 원문보기

한국미생물·생명공학회지 = Korean journal of microbiology and biotechnology, v.41 no.3, 2013년, pp.350 - 357  

김미경 (선문대학교 제약공학과) ,  박현 (극지연구소) ,  오태진 (선문대학교 제약공학과)

초록
AI-Helper 아이콘AI-Helper

지의류는 사막에서 북극지방까지 이르는 극한 환경에서도 생존 가능한 곰팡이, 조류 또는 시아노박테리아 등으로 구성된 공생체이다. 몇몇 지의류 공생체들은 항균, 항곰팡이, 항바이러스, 항암, 항산화 및 항염증 등과 같은 많은 생물학적 활성을 지닌 넓은 범위의 이차대사물질을 생산한다. 지의류와 공생 관계인 박테리아에 관하여는 아주 일부 알려져 있다. 최근 본 연구팀은 북극 지의류 Stereocaulon spp로부터 4종류의 미생물을 분리하였으며, DPPH와 ABTS 측정법을 이용하여 그들의 항산화능을 조사하였다. 또한 총 폴리페놀 함량과 총 플라보노이드 함량 분석 등도 측정되었다. 강력한 라디컬 소거능은 지의류 추출물을 이용하여 수행하였다. 본 연구에서 조사된 4종류 중, Bosea vestrisii 36546(T)의 에틸아세테이트 추출액은 DPPH 분석에서 86.8% 그리고 ABTS 분석에서 75.2%에 달하는 억제력과 함께 가장 강력한 자유 라디컬 소거능을 보여주었다. 따라서 이러한 결과들로부터 지의류 유래 박테리아 종들이 천연 항산화제로서 잠재적인 소재가 될 수 있다는 것을 제안한다.

Abstract AI-Helper 아이콘AI-Helper

Lichens are symbiotic organisms composed of fungi, algae, or cyanobacteria which are able to survive in extreme environmental conditions ranging from deserts to polar areas. Some lichen symbionts produce a wide range of secondary metabolites that have many biological activities such as antibacterial...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The FRAP values in various solvent extracts of polar microorganisms are summarized in Table 4. To evaluate the reducing (antioxidant) potential of tomato fractions, the reduction of Fe3+-TPTZ complex to Fe2+ in the presence of antioxidants were calculated. The assay is based on the total amount of antioxidant to the reducing capacity of the sample.
  • They have kept on fresh media that mentioned above, respectively. To identify these isolates, we carried out colony PCR. Each fresh single colony were picked in PCR tube with 20 ul of distilled water and used as PCR template.
  • Based on this background, we isolated the total 4 microorganisms from the Arctic lichen Stereocaulon spp. and evaluated their antioxidant activities. In their 16S rRNA sequence analysis of 4 microorganisms, KOPRI 26639 and KOPRI 26641 looks like same strain (Table 1).

대상 데이터

  • Stereocaulon was located around the Dasan, Korean Arctic Station at Ny-Alesund, Svalbard, Norway (S78°, E11°).

데이터처리

  • Data were expresses as Mean ± SD. Statistical analysis was done using Microsoft Office Excel 2007 and a one-way analysis of variance (ANOVA). Differences were considered significant at p < 0.

이론/모형

  • Phylogenetic dendrogram of polar microorganisms isolated from the Arctic lichen Stereocaulon spp. The tree was constructed by the neighbor-joining method. Bar 0.
본문요약 정보가 도움이 되었나요?

참고문헌 (53)

  1. Alegre I, Vinas I, Usall J, Anguera M, Altisent R, Abadias M. 2013. Antagonistic effect of Pseudomonas graminis CPA-7 against foodborne pathogens in fresh-cut apples under simulated commercial conditions. Food Microbiol. 33: 139-148. 

  2. Alegre I, Vinas I, Usall J, Teixido N, Figge MJ, Abadias M. 2013. Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis. Food Microbiol. 34: 390-399. 

  3. Arnao MB, Cano A, Acosta M. 2010. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 73: 239-244. 

  4. Baik KS, Park SC, Kim EM, Lim CH, Seong CN. 2010. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int. J. Syst. Evol. Microbiol. 60: 134-139. 

  5. Bates ST, Cropsey GWG, Caporaso G, Knight R, Fierer N. 2011. Bacterial communities associated with the lichen symbiosis. Appl. Environ. Microbiol. 77: 1309-1314. 

  6. Benzie IFF, Strain JJ. 1996. The ferric reducing antioxidant ability of plasma (FRAP) as a measure of "antioxidant power" : the FRAP assay. Anal. Biochem. 239: 70-76. 

  7. Benzie IFF, Strain JJ. 1999. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method. Enzymol. 299: 15-27. 

  8. Bhattarai HD, Kim T, Oh H, Yim JH. 2008. Stereocalpin A, a bioactive cyclic depsipeptide from the Antarctic lichen Stereocaulon alpinum. Tetrahedron Lett. 49: 29-31. 

  9. Bhattarai HD, Kim T, Oh H, Yim JH. 2013. A new pseudodepsidone from the Antarctic lichen Stereocaulon alpinum and its antioxidant, antibacterial activity. J. Antibiot. (Tokyo). [Epub ahead of print] 

  10. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 26: 1199-1200. 

  11. Brodo IM, Sharnoff SD, Sharnoff S. 2001. Stereocaulon (pp. 663-670) In, Lichens of North America. Yale University Press, New Haven. 

  12. Cardinale M, Puglia AM, Grube M. 2006. Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol. Ecol. 57: 484-495. 

  13. Cardinale M, Jr Castro JVD, Muller H, Berg G, Grube M. 2008. In situanalysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol. Ecol. 66: 63-71. 

  14. Coleman JJ, Ghosh S, Okoli I, Mylonakis E. 2011. Antifungal activity of microbial secondary metabolites. PLoS One. 6: e25321. 

  15. Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. 2004. Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physic. India. 52: 794-804. 

  16. Gardner PT, White TAC, McPhail DB, Duthie GG. 2000. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem. 68: 471-474. 

  17. Gonzalez I, Ayuso-Sacido A, Anderson A, Genilloud O. 2005. Actinomycetes isolated from lichens: Evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol. Ecol. 54: 401-415. 

  18. Grice HC. 1986. Safety evaluation of butylatedhydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol. 24: 1127-1130. 

  19. Halliwell B. 1997. Antioxidant and human disease: a general introduction. Nutr. Rev. 55: 44-49. 

  20. Halvorsen BL, Holte K, Myhrstad MCW, Barikmo I, Hvattum E, Remberg SF, et al. 2002. A systematic screening of total antioxidants in dietary plants. J. Nutr. 132: 461-471. 

  21. Hawksworth DL, Kirk PM, Sutton BC, Pegler DN. 1995. Ainsworth & Bisby's dictionary of the fungi. 8th edition. CAB international, Wallingford. 

  22. Ingolfsdottir K, Chung GAC, Skulason VG, Gissurarson SR, Vilhelmsdottir M. 1998. Antimycobacterial activity of lichens metabolites in vitro. Eur. J. Pharm. Sci. 6: 141-144. 

  23. Kosani MM, Rankovi BR, Stanojkovi TP. 2012. Antioxidant, antimicrobial and anticancer activities of three Parmelia species. J. Sci. Food Agric. 9: 1909-1916. 

  24. Kullisaar T, Zilmer M, Mikelsaar M, Vihalemm T, Annuk H, Kairane C, et al. 2002. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 70: 388-391. 

  25. La Scola B, Mallet MN, Grimont PA, Raoult D. 2003. Bosea eneae sp. nov, Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov, isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996) Int. J. Syst. Evol. Microbiol. 53: 15-20. 

  26. Lauterwein M, Oethinger M, Belsner K, Peters T, Marre R. 1995. In vitro activities of the lichen secondary metabolites vulpinic acid,(+)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob. Agents Chemother. 39: 2541- 2543. 

  27. Lawrey JD. 1989. Lichen secondary compounds: evidence for a correspondence between antiherbivore and antimicrobial function. J. Bryol. 92: 326-328. 

  28. Lin MY, Chang FY. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digest. Dis. Sci. 45: 1617-1622. 

  29. Luo H, Yamamoto Y, Jeon HS, Liu YP, Jung JS, Koh YJ, et al. 2011. Production of anti-Helicobacter pylori metabolite by the lichen-forming fungus Nephromopsis pallescens. J. Microbiol. 49: 66-70. 

  30. Luo H, Yamamoto Y, Liu Y, Jung JS, Kahng HY, Koh YJ, et al. 2010. The in vitro antioxidant properties of Chinese highland lichens. J. Microbiol. Biotechnol. 20: 1524-1528. 

  31. Manojlovi N, Rankovi B, Kosani M, Vasiljevi P, Stanojkovi T. 2012. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine. 19: 1166-1172. 

  32. Molnar K, Farkas E. 2010. Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch. C. 65: 157-173. 

  33. Morita H, Tsuchiya T, Kishibe K, Noya S, Shiro M, Hirasawa Y. 2009. Antimitotic activity of lobaric acid and a new benzofuran, sakisacaulon A from Stereocaulonsasakii. Bioorg. Med. Chem. 19: 3679-3681. 

  34. Muller K. 2001. Pharmaceutically relevant metabolites from lichens. Appl. Microbiol. Biotechnol. 56: 9-16. 

  35. Nash III TH. 1996. Introduction. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 1-7. 

  36. Oksanen I. 2006. Ecological and biotechnological aspects of lichens. J. Microbial. Biotechnol. 73: 723-734. 

  37. Paudel B, Bhattarai HD, Prasad Pandey D, Hur JS, Hong SG, Kim IC, et al. 2012. Antioxidant, antibacterial activity and brine shrimp toxicity test of some mountainous lichens from Nepal. Biol. Res. 45: 387-391. 

  38. Paudel B, Bhattarai HD, Lee JS, Hong SG, Shin HW, Yim JH. 2008. Antibacterial potential of Antarctic lichens against human pathogenic Gram-positive bacteria. Phytother. Res. 22: 1269-1271. 

  39. Pietta PG. 2000. Flavonoids as Antioxidants. J. Nat. Prod. 63: 1035-1042. 

  40. Prior RL, Wu X, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in food and dietary supplements. J. Agric. Food Chem. 53: 4290-4302. 

  41. Rankovi B, Rankovi D, Mari D. 2010. Antioxidant and antimicrobial activity of some lichen species. Mikrobiologiia 79: 812-818. 

  42. Rice-Evans CA, Miller NJ, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152-159. 

  43. Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. 1995. The relative activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22: 375-383. 

  44. Rice-Evans CA, Nicholas J, Miller J, Paganga G. 1996. Structure- antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20: 933-956. 

  45. Seo C, Sohn JH, Park SM, Yim JH, Lee HK, Oh H. 2008. Usimines A-C, bioactive usnic acid derivatives from the Antarctic lichen Stereocaulon alpinum. J. Nat. Prod. 71: 710-712. 

  46. Silva NMV, Pereira TM, Filho SA, Matsuura T. 2011. Taxonomic characterization and antimicrobial activity of actinomycetes associated with foliose lichens from the Amazonian ecosystem. Aust. J. Basic. Appl. Sci. 5: 910-918. 

  47. Slinkard K, Singleton VL. 1977. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 28: 49-55. 

  48. Stocker-Worgotter E. 2008. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat. Prod. Rep. 25: 188-200. 

  49. Thadhani VM, Choudhary MI, Ali S, Omar I, Siddique H, Karunaratne V. 2011. Antioxidant activity of some lichen metabolites. Nat. Prod. Res. 25: 1827-1837. 

  50. Wichi HP. 1988. Enhanced tumor development by butylatedhydroxyanisole (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food Chem. Toxicol. 26: 717-723. 

  51. Yamamoto Y. 2002. Discharge and germination of lichen ascospores in the laboratory. Lichenol. 1: 11-22. 

  52. Zhang S, Liu L, Su Y, Li H, Sun Q, Liang X, et al. 2011. Antioxidative activity of lactic acid bacteria in yogurt. Afr. J. Microbial. Res. 5: 5149-5201. 

  53. Zhishen JT, Mengcheng WJ. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on super oxide radicals. Food Chem. 64: 555-559. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로