$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

THERMAL SHOCK FRACTURE OF SILICON CARBIDE AND ITS APPLICATION TO LWR FUEL CLADDING PERFORMANCE DURING REFLOOD 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.45 no.6, 2013년, pp.811 - 820  

Lee, Youho (Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT)) ,  Mckrell, Thomas J. (Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT)) ,  Kazimi, Mujid S. (Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT))

Abstract AI-Helper 아이콘AI-Helper

SiC has been under investigation as a potential cladding for LWR fuel, due to its high melting point and drastically reduced chemical reactivity with liquid water, and steam at high temperatures. As SiC is a brittle material its behavior during the reflood phase of a Loss of Coolant Accident (LOCA) ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Hence, understanding of the CMC fracture upon quenching requires a detailed description of stress fields in each layer, flaw distributions, and crack propagation mechanisms between the layers. This study explores monolithic SiC performance upon quenching as a preliminary attempt to envision material performance of the EBC layer and the innermost monolith. Thus, it provides a building block for understanding the CMC cladding behavior.
본문요약 정보가 도움이 되었나요?

참고문헌 (34)

  1. Y. Lee, T. J. McKrell, C. Yue, and M. S. Kazimi, "Safety Assessment of SiC Cladding Under Loss of Coolant Accident (LOCA) Conditions in LWRs," Nuclear Technology, Accepted 28 Nov 2012, This article has been published in August 2013. Volume 183/Number 2/ Pages 210-227. 

  2. D. M. Carpenter, G. E. Kohse, and M. S. Kazimi, "An Assessment of Silicon Carbide as a Cladding Material for Light Water Reactors," MIT-ANP-TR-132, MIT Center for Advanced Nuclear Energy Systems, Cambridge, USA (2010). 

  3. P. Brossard, "LWR fuels Innovation & Simulation activities at CEA." MIT Symposium on Advanced LWR Fuels. Cambridge : MIT, March 2012. CEA Presentation Slide at MIT Symposium on Advanced LWR Fuels. 

  4. J. H. Strumpell, "Material Development Supporting Customer Needs." MIT Symposium on Advanced LWR Fuels. Cambridge : MIT, March 2012. AREVA Presentation Slide at MIT Symposium on Advanced LWR Fuels. 

  5. H. E. Khalifa, C. P. Deck, and C. A. Back, "Development of High Purity ${\beta}$ -SiC Joints for LWR Cladding." MIT Symposium on Advanced LWR Fuels. Cambridge : MIT, March 2012. GA Presentation Slide at MIT Symposium on Advanced LWR Fuels. 

  6. K. Terrani, B. Pint, and L. Snead, "Cladding Steam Corrosion Studies." MIT Symposium on Advanced LWR Fuels. Cambridge : MIT, March 2012. ORNL Presentation Slide at MIT Symposium on Advanced LWR Fuels. 

  7. H. Feinroth, "Silicon Carbide Triplex Fuel Cladding BWR SiC Channel Boxes." MIT Symposium on Advanced LWR Fuels. Cambridge : MIT, March 2012. Ceramic Tubular Products (CTP) Presentation Slide at MIT Symposium on Advanced LWR Fuels. 

  8. E. Lahoda, "UN fuel in SiC Cladding." MIT Symposium on Advanced LWR Fuels. Cambridge : MIT, March 2012. Westinghouse Presentation at MIT Symposium on Advanced LWR Fuels. 

  9. B. Cheng, "Breakthrough Technologies for Improving Fuel Safety Margins." MIT Symposium on advanced LWR Fuels. Cambridge : MIT, March 2012. EPRI Presentation slide at MIT Symposium on advanced LWR Fuels. 

  10. J. D Stempien, D. M Carpenter, G. Kohse, and M. S Kazimi, "Behavior of Triplex Silicon Carbide Fuel Cladding Designs Tested Under Simulated PWR Conditions." MIT-ANP-TR-135, MIT Center for Advanced Nuclear Energy Systems, Cambridge, USA (2011). 

  11. R. P. Arnold, T. J. McKrell, and M. S. Kazimi, "Silicon Carbide Oxidation in High Temperature Steam." MITANP- TR-139, MIT Center for Advanced Nuclear Energy Systems, Cambridge, USA (2011). 

  12. U. S. Code of Federal Regulations, Title 10, Energy, Parts0 to 50, Revised January 1, 1997, U.S. Government Printing Office, Washington, DC, 1997. 

  13. H. M. Chung, "Fuel Behavior Under Loss-Of-Coolant Accident situations", Nuclear Engineering and Technology, Vol.37, 4, pp. 327-362 (2005). 

  14. G. W. Parker, R. A. Lorenz, and J. G. Wilhelm. "Release of Fission Products from Reactor Fuels During Transient Accidents Simulated in Treat," International Symposium on fission product release and transport under accident conditions: held at Oak Ridge, Tennessee, April 5-7, 1965. 

  15. T. Fujishiro, and R. L. Johnson, P. E. MacDonald, R. K McCardell, "Light Water Reactor Fuel Response during Reactivity Initiated Accident Experiments," NUREG/CR- 0269, August 1978. 

  16. P. D. Parsons, E. D. Hindle, and C. A. Mann, "The Deformation, Oxidation and Embrittlement of PWR Fuel Cladding in a Loss-of-Coolant Accident: A State-of-the-Art Report," CSNI Report 129, December 1986. 

  17. NRC Letter, "Proposed Technical Basis for theRevision to 10 CFR 50.46 LOCA Embrittlement Criteria for Fuel Cladding Materials," dated May 23, 2007 ML071430639). 

  18. NRC Letter, "Technical Basis and Rulemaking Strategy for the Revision of 10 CFR 50.46 (b) Loss-of-Coolant Accident Embrittlement Criteria for Fuel Cladding Materials," dated December 18, 2008 (ML083460310). 

  19. M. Janssen, J. Zuidema, and R. J. H. Wanhill, Fracture Mechanics. 2nd Edition. Delft : Delft University Press, 2002. 

  20. L. Snead, Takashi Nozawa, Yutai Katoh, Thak-Sang Byun, Sosuke Kondo, and David A. Petti, "Handbook of SiC properties for fuel performance modeling," Journal of Nuclear Materials, Vol. 371, pp. 329-377(2007). 

  21. T. S. Byun, E. Lara-Curzio, R. A Lowden, L. L. Snead, and Y. Katoh, "Miniaturized fracture stress tests for thin-walled tubular SiC Specimens," Journal of Nuclear Materials, Vols. 367-370, pp. 653-658 (2007). 

  22. Y. Katoh, L. L. Snead, C. H Henager Jr, A. Hasegawa, A. Kohyama, B. Riccardi, and H. Hegeman, "Current status and critical issues for development of SiC composites for fusion application," Journal of Nuclear Materials, Vols. 367-370, pp. 659-671 (2007). 

  23. T. Nozawa, Y. Choi, T. Hinoki, H. Kishimoto, A. Kohyama, and H. Tanigawa, "Tensile, Compressive and In-Plane/ Inter-Laminar Shear Failure Behavior of CVI- and NITESiC/ SiC Composites," Ceramic Society of Japan, Conf. Series: Materials Science and Engineering, Vol. 18, (2011). 

  24. T. Nozawa, K. Ozawa, Y. Choi, A. Kohyama, and H. Tanigawa, "Determination and prediction of axial/offaxial mechanical properties of SiC/SiC composites," Fusion Engineering and Design, Article in press . 

  25. M. F. Ashby, and R. H. David, Engineering materials 1: an introduction to properties, applications and design. 3rd Edition. Boston : Elsevier Butterworth-Heinemann, 2005. 

  26. M. Bengisu, Engineering Ceramics. New York : Springer, 2001. 

  27. J. She, and T. Ohji, "Thermal Shock Behavior of Porous Silicon Carbide Ceramics," Journal of American Ceramic Society, Vol. 85[8] , pp. 2125-27 (2002) 

  28. A. M. Kueck, K. D. Kim, L. C. De Jonghe, and R. O. Ritchie, "Atom-Resolution Imaging of the Nanoscale Origin of Toughness in Rare-Earth Doped SiC," Nano Letters, Vol.8 [9], pp. 2935-2939 (2008). 

  29. K. Derewnicki, "Vapour Bubble Formation During Fast Transient Boiling On a Wire," International Journal of Heat and Mass Transfer, Vol.26 [9], pp. 1405-1408 (1983). 

  30. K. P. Derewnicki, "Experimental Studies of Heat Transfer and Vapour Formation in Fast Transient Boiling," International Journal of Heat and Mass Transfer, Vol.28 [11], pp.2085-2092 (1985). 

  31. F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer 7thed, John Wiley & Sons, New Jersey (2011). 

  32. Won-Jae Lee, "Reference LBLOCA Analysis for Solid Fuel Modified by Won-Jae Lee Based on Typical PWR Input of U.S NRC (System Geometric Input) and General PWRs Data (Protection Systems and Core Kinetics)," MIT Center for Advanced Nuclear Energy Systems, Cambridge, USA (2003). 

  33. Saint-Gobain Hexoloy Material Information Website, www.hexoloy.com/data-sheets. 

  34. H. M. Chung, and T. F. Kassner, "Embrittlement Cirteria for Zircaloy Fuel Cladding Applicable to Accident Situations in Light-Water Reactors: Summary Report," NUREG/CR- 1344, Argonne National Laboratory, Illinois, USA (1980). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로