$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Seahorse-derived peptide suppresses invasive migration of HT1080 fibrosarcoma cells by competing with intracellular α-enolase for plasminogen binding and inhibiting uPA-mediated activation of plasminogen

BMB reports v.47 no.12 , 2014년, pp.691 - 696  
Abstract

${\alpha}$-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. ${\alpha}$-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, ${\alpha}$-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of ${\alpha}$-enolase. In this study, we report that this peptide competes with cellular ${\alpha}$-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer.

이미지/표/수식 (4)

참고문헌 (20)

  1. Takei, N., Kondo, J., Nagaike, K., Ohsawa, K., Kato, K. and Kohsaka, S. (1991) Neuronal survival factor from bovine brain is identical to neuron-specific enolase. J. Neurochem. 57, 1178-1184. 
  2. Fluit, A. C., Wolfhagen, M. J., Jansze, M., Torensma, R. and Verhoef, J. (1993) Toxin B of Clostridium difficile does not have enolase activity. FEBS Lett. 316, 103-105. 
  3. al-Giery, A. G. and Brewer, J. M. (1992) Characterization of the interaction of yeast enolase with polynucleotides. Biochim. Biophys. Acta. 1159, 134-140. 
  4. Vanegas, G., Quinones, W., Carrasco-Lopez, C., Concepcion, J. L., Albericio, F. and Avilan, L. (2007) Enolase as a plasminogen binding protein in Leishmania mexicana. Parasitol. Res. 101, 1511-1516. 
  5. Mundodi, V., Kucknoor, A. S. and Alderete, J. F. (2008) Immunogenic and plasminogen-binding surface-associated alpha-enolase of Trichomonas vaginalis. Infect. Immun. 76, 523-531. 
  6. Plow, E. F., Felez, J. and Miles, L. A. (1991) Cellular regulation of fibrinolysis. Thromb. Haemost. 66, 32-36. 
  7. Plow, E. F., Herren, T., Redlitz, A., Miles, L. A. and Hoover-Plow, J. L. (1995) The cell biology of the plasminogen system. FASEB J. 9, 939-945. 
  8. Wiman, B. and Collen, D. (1979) On the mechanism of the reaction between human alpha 2-antiplasmin and plasmin. J. Biol. Chem. 254, 9291-9297. 
  9. Lancefield, R. C. (1957) Differentiation of group A streptococci with a common R antigen into three serological types, with special reference to the bactericidal test. J. Exp. Med. 106, 525-544. 
  10. Gentile, F., Pizzimenti, S., Arcaro, A., Pettazzoni, P., Minelli, R., D'Angelo, D., Mamone, G., Ferranti, P., Toaldo, C., Cetrangolo, G., Formisano, S., Dianzani, M. U., Uchida, K., Dianzani, C. and Barrera, G. (2009) Exposure of HL-60 human leukaemic cells to 4-hydroxynonenal promotes the formation of adduct(s) with alpha-enolase devoid of plasminogen binding activity. Biochem. J. 422, 285-294. 
  11. Ryu, B., Qian, Z. J. and Kim, S. K. (2010) Purification of a peptide from seahorse, that inhibits TPA-induced MMP, iNOS and COX-2 expression through MAPK and NF-kappaB activation, and induces human osteoblastic and chondrocytic differentiation. Chem. Biol. Interact. 184, 413-422. 
  12. Quinones, W., Pena, P., Domingo-Sananes, M., Caceres, A., Michels, P. A., Avilan, L. and Concepcion, J. L. (2007) Leishmania mexicana: molecular cloning and characterization of enolase. Exp. Parasitol. 116, 241-251. 
  13. Pancholi, V. (2001) Multifunctional alpha-enolase: its role in diseases. Cell. Mol. Life Sci. 58, 902-920. 
  14. Boyle, M. D. and Lottenberg, R. (1997) Plasminogen activation by invasive human pathogens. Thromb. Haemost. 77, 1-10. 
  15. Coleman, J. L. and Benach, J. L. (1999) Use of the plasminogen activation system by microorganisms. J. Lab. Clin. Med. 134, 567-576. 
  16. Lahteenmaki, K., Edelman, S. and Korhonen, T. K. (2005) Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends. Microbiol. 13, 79-85. 
  17. Bergmann, S., Wild, D., Diekmann, O., Frank, R., Bracht, D., Chhatwal, G. S. and Hammerschmidt, S. (2003) Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. Mol. Microbiol. 49, 411-423. 
  18. Ehinger, S., Schubert, W. D., Bergmann, S., Hammerschmidt, S. and Heinz, D. W. (2004) Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites. J. Mol. Biol. 343, 997-1005. 
  19. Felez, J., Chanquia, C. J., Levin, E. G., Miles, L. A. and Plow, E. F. (1991) Binding of tissue plasminogen activator to human monocytes and monocytoid cells. Blood 78, 2318-2327. 
  20. Del Pozo, V., Rojo, M., Rubio, M. N., Cortegano, I., Cardaba, B., Gallardo, S., Ortega, M., Civantos, E., Lopez, E., Martin-Mosquero, C., Peces-Barba, G., Palomino, P., Gonzalez-Mangado, N. and Lahoz, C. (2002) Gene therapy with galectin-3 inhibits bronchial obstruction and inflammation in antigen-challenged rats through inerleukin-5 gene downregulation. Am. J. Respir. Crit. Care Med. 166, 732-737. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일