$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Exploitation of Reactive Oxygen Species by Fungi: Roles in Host-Fungus Interaction and Fungal Development 원문보기

Journal of microbiology and biotechnology, v.24 no.11, 2014년, pp.1455 - 1463  

Kim, Hyo Jin (Fermentation Research Center, Korea Food Research Institute)

Abstract AI-Helper 아이콘AI-Helper

In the past, reactive oxygen species (ROS) have been considered a harmful byproduct of aerobic metabolism. However, accumulating evidence implicates redox homeostasis, which maintains appropriate ROS levels, in cell proliferation and differentiation in plants and animals. Similarly, ROS generation a...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • This review article describes the impact of ROS on the proliferation and differentiation of fungi. The focus of the article is mainly on the role of the fungal NADPH oxidase in ROS generation and signaling in fungal development and host-fungus interaction.
  • Emerging research, however, has suggested that ROS are also necessary for proper growth and development in animals, plants, and fungi [1, 31, 52, 72]. This review article describes the impact of ROS on the proliferation and differentiation of fungi. The focus of the article is mainly on the role of the fungal NADPH oxidase in ROS generation and signaling in fungal development and host-fungus interaction.
본문요약 정보가 도움이 되었나요?

참고문헌 (75)

  1. Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W. 2005. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 13: 111-118. 

  2. Ahmed KA, Sawa T, Ihara H, Kasamatsu S, Yoshitake J, Rahaman MM, et al. 2012. Regulation by mitochondrial superoxide and NADPH oxidase of cellular formation of nitrated cyclic GMP: potential implications for ROS signalling. Biochem. J. 441: 719-730. 

  3. Akaike T, Nishida M, Fujii S. 2013. Regulation of redox signalling by an electrophilic cyclic nucleotide. J. Biochem. 153: 131-138. 

  4. Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373-399. 

  5. Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, et al. 2006. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J. 47: 851-863. 

  6. Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, et al. 2002. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J. Exp. Bot. 53: 1367-1376. 

  7. Bradley DJ, Kjellbom P, Lamb CJ. 1992. Elicitor- and woundinduced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70: 21-30. 

  8. Cano-Dominguez N, Alvarez-Delfin K, Hansberg W, Aguirre J. 2008. NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryot. Cell 7: 1352-1361. 

  9. Cheng YJ, Kim MD, Deng XP, Kwak SS, Chen W. 2013. Enhanced salt stress tolerance in transgenic potato plants expressing IbMYB1, a sweet potato transcription factor. J. Microbiol. Biotechnol. 23: 1737-1746. 

  10. Choi H, Lee DG. 2013. The influence of the N-terminal region of antimicrobial peptide pleurocidin on fungal apoptosis. J. Microbiol. Biotechnol. 23: 1386-1394. 

  11. Decoursey TE, Ligeti E. 2005. Regulation and termination of NADPH oxidase activity. Cell Mol. Life Sci. 62: 2173-2193. 

  12. Delaunay A, Isnard AD, Toledano MB. 2000. $H_{2}O_{2}$ sensing through oxidation of the Yap1 transcription factor. EMBO J. 19: 5157-5166. 

  13. Dunand C, Crevecoeur M, Penel C. 2007. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol. 174: 332-341. 

  14. Eaton CJ, Jourdain I, Foster SJ, Hyams JS, Scott B. 2008. Functional analysis of a fungal endophyte stress-activated MAP kinase. Curr. Genet. 53: 163-174. 

  15. Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ. 2007. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc. Natl. Acad. Sci. USA 104: 11772-11777. 

  16. Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, et al. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442-446. 

  17. Funato Y, Terabayashi T, Sakamoto R, Okuzaki D, Ichise H, Nojima H, et al. 2010. Nucleoredoxin sustains Wnt/betacatenin signaling by retaining a pool of inactive dishevelled protein. Curr. Biol. 20: 1945-1952. 

  18. Giesbert S, Schurg T, Scheele S, Tudzynski P. 2008. The NADPH oxidase Cpnox1 is required for full pathogenicity of the ergot fungus Claviceps purpurea. Mol. Plant Pathol. 9: 317-327. 

  19. Grant JJ, Yun BW, Loake GJ. 2000. Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J. 24: 569-582. 

  20. Gupta R, Luan S. 2003. Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol. 132: 1149-1152. 

  21. Gutteridge JM. 1994. Antioxidants, nutritional supplements and life-threatening diseases. Br. J. Biomed. Sci. 51: 288-295. 

  22. Holmgren A, Lu J. 2010. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem. Biophys. Res. Commun. 396: 120-124. 

  23. Kim EJ, Oh EK, Lee JK. 2014. Peroxidase and photoprotective activities of magnesium protoporphyrin IX. J. Microbiol. Biotechnol. 24: 36-43. 

  24. Kim HJ, Chen C, Kabbage M, Dickman MB. 2011. Identification and characterization of Sclerotinia sclerotiorum NADPH oxidases. Appl. Environ. Microbiol. 77: 7721-7729. 

  25. Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, et al. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22: 2623-2633. 

  26. Lambeth JD. 2004. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4: 181-189. 

  27. Lara-Ortiz T, Riveros-Rosas H, Aguirre J. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol. Microbiol. 50: 1241-1255. 

  28. Lessing F, Kniemeyer O, Wozniok I, Loeffler J, Kurzai O, Haertl A, Brakhage AA. 2007. The Aspergillus fumigatus transcriptional regulator AfYap1 represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse infection model. Eukaryot. Cell 6: 2290-2302. 

  29. Lev S, Hadar R, Amedeo P, Baker SE, Yoder OC, Horwitz BA. 2005. Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals. Eukaryot. Cell 4: 443-454. 

  30. Lin CH, Yang SL, Chung KR. 2009. The YAP1 homologmediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus. Mol. Plant Microbe Interact. 22: 942-952. 

  31. Livanos P, Apostolakos P, Galatis B. 2012. Plant cell division: ROS homeostasis is required. Plant Signal. Behav. 7: 771-778. 

  32. Malagnac F, Lalucque H, Lepere G, Silar P. 2004. Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet. Biol. 41: 982-997. 

  33. Meng TC, Fukada T, Tonks NK. 2002. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9: 387-399. 

  34. Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, et al. 2009. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal. 2: ra45. 

  35. Montero-Barrientos M, Hermosa R, Cardoza RE, Gutierrez S, Monte E. 2011. Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum. Appl. Environ. Microbiol. 77: 3009-3016. 

  36. Morinaka A, Yamada M, Itofusa R, Funato Y, Yoshimura Y, Nakamura F, et al. 2011. Thioredoxin mediates oxidationdependent phosphorylation of CRMP2 and growth cone collapse. Sci. Signal. 4: ra26. 

  37. Nauseef WM. 2004. Assembly of the phagocyte NADPH oxidase. Histochem. Cell Biol. 122: 277-291. 

  38. Nauseef WM. 2008. Biological roles for the NOX family NADPH oxidases. J. Biol. Chem. 283: 16961-16965. 

  39. Nishida M, Sawa T, Kitajima N, Ono K, Inoue H, Ihara H, et al. 2012. Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat. Chem. Biol. 8: 714-724. 

  40. Novo E, Parola M. 2008. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 1: 5. 

  41. Ostman A, Frijhoff J, Sandin A, Bohmer FD. 2011. Regulation of protein tyrosine phosphatases by reversible oxidation. J. Biochem. 150: 345-356. 

  42. Owusu-Ansah E, Banerjee U. 2009. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461: 537-541. 

  43. Podder B, Song HY, Kim YS. 2014. Naringenin exerts cytoprotective effect against paraquat-induced toxicity in human bronchial epithelial BEAS-2B cells through NRF2 activation. J. Microbiol. Biotechnol. 24: 605-613. 

  44. Rinnerthaler M, Buttner S, Laun P, Heeren G, Felder TK, Klinger H, et al. 2012. Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast. Proc. Natl. Acad. Sci. USA 109: 8658-8663. 

  45. Roca MG, Weichert M, Siegmund U, Tudzynski P, Fleissner A. 2012. Germling fusion via conidial anastomosis tubes in the grey mould Botrytis cinerea requires NADPH oxidase activity. Fungal Biol. 116: 379-387. 

  46. Rodriguez R, Redman R. 2005. Balancing the generation and elimination of reactive oxygen species. Proc. Natl. Acad. Sci. USA 102: 3175-3176. 

  47. Rolke Y, Tudzynski P. 2008. The small GTPase Rac and the p21-activated kinase Cla4 in Claviceps purpurea: interaction and impact on polarity, development and pathogenicity. Mol. Microbiol. 68: 405-423. 

  48. Ryder LS, Dagdas YF, Mentlak TA, Kershaw MJ, Thornton CR, Schuster M, et al. 2013. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proc. Natl. Acad. Sci. USA 110: 3179- 3184. 

  49. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, et al. 1998. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17: 2596-2606. 

  50. Sawa T, Zaki MH, Okamoto T, Akuta T, Tokutomi Y, Kim- Mitsuyama S, et al. 2007. Protein S -guany lation by the biological signal 8-nitroguanosine 3',5'-cyclic monophosphate. Nat. Chem. Biol. 3: 727-735. 

  51. Schopfer FJ, Cipollina C, Freeman BA. 2011. Formation and signaling actions of electrophilic lipids. Chem. Rev. 111: 5997- 6021. 

  52. Scott B, Eaton CJ. 2008. Role of reactive oxygen species in fungal cellular differentiations. Curr. Opin. Microbiol. 11: 488-493. 

  53. Segal AW. 2005. How neutrophils kill microbes. Annu. Rev. Immunol. 23: 197-223. 

  54. Segmuller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P. 2008. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol. Plant Microbe Interact. 21: 808-819. 

  55. Singh KK. 2000. The Saccharomyces cerevisiae Sln1p-Ssk1p two-component system mediates response to oxidative stress and in an oxidant-specific fashion. Free Radic. Biol. Med. 29: 1043-1050. 

  56. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, et al. 1999. Cell transformation by the superoxide-generating oxidase Mox1. Nature 401: 79-82. 

  57. Takemoto D, Kamakura S, Saikia S, Becker Y, Wrenn R, Tanaka A, et al. 2011. Polarity proteins Bem1 and Cdc24 a re components of the filamentous fungal NADPH oxidase complex. Proc. Natl. Acad. Sci. USA 108: 2861-2866. 

  58. Takemoto D, Tanaka A, Scott B. 2006. A $p67^{Phox}$ -like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell 18: 2807-2821. 

  59. Takemoto D, Tanaka A, Scott B. 2007. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet. Biol. 44: 1065-1076. 

  60. Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B. 2006. Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 18: 1052-1066. 

  61. Tanaka A, Takemoto D, Hyon GS, Park P, Scott B. 2008. NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloe festucae and perennial ryegrass. Mol. Microbiol. 68: 1165-1178. 

  62. Temme N, Tudzynski P. 2009. Does Botrytis cinerea ignore $H_2O_2$ -induced oxidative stress during infection? Characterization of Botrytis activator protein 1. Mol. Plant Microbe Interact. 22: 987-998. 

  63. Theopold U. 2009. Developmental biology: a bad boy comes good. Nature 461: 486-487. 

  64. Torres MA, Dangl JL, Jones JD. 2002. Arabidopsis $gp91^{phox}$ homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99: 517-522. 

  65. Torres MA, Jones JD, Dangl JL. 2005. Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat. Genet. 37: 1130-1134. 

  66. Torres MA, Jones JD, Dangl JL. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141: 373-378. 

  67. Tripathy BC, Oelmuller R. 2012. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 7: 1621-1633. 

  68. Tsukagoshi H, Busch W, Benfey PN. 2010. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143: 606-616. 

  69. van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H. 2003. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423: 773-777. 

  70. Veal EA, Findlay VJ, D ay AM, B ozonet SM, Evans J M, Quinn J, Morgan BA. 2004. A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stressactivated MAP kinase. Mol. Cell 15: 129-139. 

  71. Venugopalan V, Tripathi SK, Nahar P, Saradhi PP, Das RH, Gautam HK. 2013. Characterization of canthaxanthin isomers isolated from a new soil Dietzia sp. and their antioxidant activities. J. Microbiol. Biotechnol. 23: 237-245. 

  72. Wang K, Zhang T, Dong Q, Nice EC, Huang C, Wei Y. 2013. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 4: e537. 

  73. Wang L, Mogg C, Walkowiak S, Joshi M, Subramaniam R. 2014. Characterization of NADPH oxidase genes NoxA and NoxB in Fusarium graminearum. Can. J. Plant Pathol. 36: 12-21. 

  74. Yang SL, Chung KR. 2012. The NADPH oxidase-mediated production of hydrogen peroxide ( $H_2O_2$ ) and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. Mol. Plant Pathol. 13: 900-914. 

  75. Zhang X, De Micheli M, Coleman ST, Sanglard D, Moye- Rowley WS. 2000. Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p. Mol. Microbiol. 36: 618-629. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로