$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

골육종에서 술전 항암화학요법의 효과 판정
Evaluation of Neoadjuvant Chemotherapy Effect in Osteosarcoma 원문보기

대한골관절종양학회지 = The Journal of the Korean Bone and Joint Tumor Society, v.20 no.2, 2014년, pp.66 - 73  

주민욱 (가톨릭대학교 의과대학 정형외과학교실) ,  강용구 (가톨릭대학교 의과대학 정형외과학교실) ,  유이령 (가톨릭대학교 의과대학 방사선과학교실) ,  최우희 (가톨릭대학교 의과대학 방사선과학교실) ,  정양국 (가톨릭대학교 의과대학 정형외과학교실) ,  김동현 (가톨릭대학교 의과대학 정형외과학교실) ,  강진우 (가톨릭대학교 의과대학 정형외과학교실)

초록
AI-Helper 아이콘AI-Helper

목적: 골육종에 대한 술전 항암화학요법의 효과를 조기에 비침습적으로 평가하기 위해 다양한 영상 진단 기법들을 사용해 왔다. 저자들은 골육종에 대한 술전 항암화학요법의 효과를 예측하는 데 있어 단순 촬영 및 양전자 방출 단층 촬영과 같은 영상 검사들의 효용성을 평가하고 양성자 방출 단층 촬영에서 얻어진 값들을 해석하는 데 있어서의 통칙을 정해 보고자 하였다. 대상 및 방법: 2주기 술전 항암화학요법 후 외과적 절제를 시행한 18명의 골육종 환자들을 대상으로 하였다. 남자 13명, 여자 5명이었으며, 연령의 중위수는 19세였다. 술전 항암화학요법의 전후로 단순 촬영 및 양전자 방출 단층 촬영을 시행하였다. 절제된 종양에 대해 병리검사를 시행하여 조직학적 반응 등급을 확인하였다. 조직병리학적 괴사 정도와 방사선학적 소견, 술전 항암화학요법 후 최대 표준섭취계수(maximum standardized uptake value), 평균 표준섭취계수(average standardized uptake value), 대사종양용적(metabolic tumor volume) 및 해당 값들의 감소율에 대해 통계학적 분석을 시행하였다. 결과: 조직학적 평가 상, 8명의 환자에서 술전 항암화학요법에 대해 좋은 반응을 확인하였다. 최대 표준섭취계수 감소율의 중위수는 좋은 반응을 보인 군에서 74 (23-77) %였고, 나머지에서 42 (-32-76) %였다. 대사종양용적 감소율의 중위수는 좋은 반응을 보인 군에서 93.5 (62-99) %였고 나머지에서 46 (-81-100) %였다. 방사선학적 소견의 범주는 조직학적 반응에 따른 차이가 없었지만 (p=1.0), 최대 표준섭취계수의 감소율은 유의한 차이를 보였다(p=0.041). 대사종양용적의 감소율 차이는 통계학적 유의성에 근접하였다(p=0.071). 결론: 본 연구에서 방사선학적 소견의 범주는 골육종에 대한 술전 항암화학요법의 효과를 평가하는 데 있어 신뢰할 수 없었지만, 최대 표준섭취계수는 유용한 척도였다. 양전자 방출 단층 촬영에서 얻어지는 값들은 여러 요인에 의해 영향을 받으므로, 각 기관은 기왕의 연구들을 참고로 각자의 판단 기준을 마련하기 위해 노력해야만 한다.

Abstract AI-Helper 아이콘AI-Helper

Purpose: Various diagnostic imaging modalities have been used to evaluate the effect of neoadjuvant chemotherapy for osteosarcoma early and noninvasively. We evaluated the effectiveness of imaging studies of plain radiographs and positron-emission tomography/computed tomography (PET/CT) in predictin...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • All 18F-FDG PET/CT images were reviewed at a workstation with fusion software (Syngo; Siemens Medical Solutions, Knoxville,Tenn.) that provided multiplanar reformatted images and displayed PET images with attenuation correction, CT images, and PET/CT fusion images. The images were closely reviewed for the detection of the primary tumor by one nuclear medicine physician who are board certified in both nuclear medicine and radiology.
  • All patients had undergone an open biopsy, pre-chemotherapy plain radiographs and a pre-chemotherapy PET/CT scan before neoadjuvant chemotherapy was initiated. Patients received consistently two cycles of neoadjuvant chemotherapy, which consisted of different combinations of high-dose methotrexate, doxorubicin, ifosfamide,and dacarbazine. Each cycle of neoadjuvant chemotherapy took at least three weeks.
  • They then had post-chemotherapy plain radiographs and a post-chemotherapy PET/CT scan before definitive surgery. The pre-chemotherapy PET/CT scans were performed within median one week (range, 0-2 weeks) before the initiation of neoadjuvant chemotherapy, and the post-chemotherapy PET/CT scans were performed within median one week (range, 0-2 weeks) after the end of chemotherapy. The resected tumor specimens were pathologically examined to estimate histological response grade using a conventional mapping method as described in previous literatures.
  • Each cycle of neoadjuvant chemotherapy took at least three weeks. They then had post-chemotherapy plain radiographs and a post-chemotherapy PET/CT scan before definitive surgery. The pre-chemotherapy PET/CT scans were performed within median one week (range, 0-2 weeks) before the initiation of neoadjuvant chemotherapy, and the post-chemotherapy PET/CT scans were performed within median one week (range, 0-2 weeks) after the end of chemotherapy.

대상 데이터

  • Figure 1. A 13 year-old male patient. While (D) a plain radiograph and (E) an magnetic resonance imaging (MRI) after chemotherapy show marked increase in tumor size compared to (A) a plain radiograph and (B) an MRI after chemotherapy, (F) a post-chemotherapy 18F-Fluoro-2-deoxyglucose(18F-FDG) positron-emission tomography/computed tomography (PET/CT) image damonstrated decrease in 18F-FDG uptake compared to (C) a prechemotherapy PET/CT image.

데이터처리

  • Statistical analysis was performed to evaluate correlation between histopathological necrosis, and radiographic finding category category, post-chemotherapy SUVmax, SUVavg and MTV as well as reduction rates of them, with SPSS 21.0 for Windows (SPSS Corporation, Chicago, IL). Fisher’s exact test and Mann-Whitney test were performed for radiographic finding category and post-chemothearpy SUVavg repectively.

이론/모형

  • PET scan followed immediately over the same body region. The CT data were used for attenuation correction, and images were reconstructed using a standard ordered-subset expectation maximization (OSEM) algorithm (two iterations, eight subsets). The axial spatial intrinsic resolution of the system was 4.
  • MTV was defined as the summed volume in cubic centimeters (cm3) including the primary tumor. The MTV was measured using a semi-automated contouring program on a Leonardo workstation (Siemens Medical Solutions, Knoxville, Tenn.), based on the tumor-to-background intensity ratio. In the measurement of targeted MTV, we set a fixed SUV cut-off value of 2.
본문요약 정보가 도움이 되었나요?

참고문헌 (28)

  1. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115:1531-43. 

  2. Bacci G, Longhi A, Fagioli F, Briccoli A, Versari M, Picci P. Adjuvant and neoadjuvant chemotherapy for osteosarcoma of the extremities: 27 year experience at Rizzoli Institute, Italy. Eur J Cancer. 2005;41:2836-45. 

  3. Bacci G, Ferrari S, Bertoni F, et al. Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the istituto ortopedico rizzoli according to the istituto ortopedico rizzoli/osteosarcoma-2 protocol: an updated report. J Clin Oncol. 2000;18:4016-27. 

  4. Hagleitner MM, de Bont ES, Te Loo DM. Survival trends and long-term toxicity in pediatric patients with osteosarcoma. Sarcoma. 2012;2012:636405. 

  5. Kim MS, Lee SY, Lee TR, et al. Prognostic nomogram for predicting the 5-year probability of developing metastasis after neo-adjuvant chemotherapy and definitive surgery for AJCC stage II extremity osteosarcoma. Ann Oncol. 2009;20:955-60. 

  6. Bajpai J, Gamnagatti S, Kumar R, et al. Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis. Pediatr Radiol. 2011;41:441-50. 

  7. Jeon DG, Song WS. How can survival be improved in localized osteosarcoma? Expert Rev Anticancer Ther. 2010;10:1313-25. 

  8. Benz MR, Czernin J, Tap WD, et al. FDG-PET/CT Imaging Predicts Histopathologic Treatment Responses after Neoadjuvant Therapy in Adult Primary Bone Sarcomas. Sarcoma. 2010;2010:143540. 

  9. Denecke T, Hundsdorfer P, Misch D, et al. Assessment of histological response of paediatric bone sarcomas using FDG PET in comparison to morphological volume measurement and standardized MRI parameters. Eur J Nucl Med Mol Imaging. 2010;37:1842-53. 

  10. Franzius C, Sciuk J, Brinkschmidt C, Jurgens H, Schober O. Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin Nucl Med. 2000; 25:874-81. 

  11. Hamada K, Tomita Y, Inoue A, et al. Evaluation of chemotherapy response in osteosarcoma with FDG-PET. Ann Nucl Med. 2009;23:89-95. 

  12. Jones DN, McCowage GB, Sostman HD, et al. Monitoring of neoadjuvant therapy response of soft-tissue and musculoskeletal sarcoma using fluorine-18-FDG PET. J Nucl Med. 1996;37:1438-44. 

  13. Tateishi U, Kawai A, Chuman H, et al. PET/CT allows stratification of responders to neoadjuvant chemotherapy for high-grade sarcoma: a prospective study. Clin Nucl Med. 2011;36:526-32. 

  14. Holscher HC, Hermans J, Nooy MA, Taminiau AH, Hogendoorn PC, Bloem JL. Can conventional radiographs be used to monitor the effect of neoadjuvant chemotherapy in patients with osteogenic sarcoma? Skeletal Radiol. 1996;25:19-24. 

  15. Cheon GJ, Kim MS, Lee JA, et al. Prediction model of chemotherapy response in osteosarcoma by 18F-FDG PET and MRI. J Nucl Med. 2009;50:1435-40. 

  16. Caldarella C, Salsano M, Isgro MA, Treglia G. The Role of Fluorine-18-fluorodeoxyglucose Positron Emission Tomography in Assessing the Response to Neoadjuvant Treatment in Patients with Osteosarcoma. Int J Mol Imaging. 2012;2012: 870301. 

  17. Hongtao L, Hui Z, Bingshun W, et al. 18F-FDG positron emission tomography for the assessment of histological response to neoadjuvant chemotherapy in osteosarcomas: a meta-analysis. Surg Oncol. 2012;21:e165-70. 

  18. Picci P, Bacci G, Campanacci M, et al. Histologic evaluation of necrosis in osteosarcoma induced by chemotherapy. Regional mapping of viable and nonviable tumor. Cancer. 1985;56:1515-21. 

  19. Picci P, Sangiorgi L, Rougraff BT, Neff JR, Casadei R, Campanacci M. Relationship of chemotherapy-induced necrosis and surgical margins to local recurrence in osteosarcoma. J Clin Oncol. 1994;12:2699-705. 

  20. Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer. 2007;57:125-34. 

  21. Konski A, Doss M, Milestone B, et al. The integration of 18-fluoro-deoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys. 2005;61:1123-8. 

  22. Nestle U, Kremp S, Schaefer-Schuler A, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med. 2005;46:1342-8. 

  23. Smith J, Heelan RT, Huvos AG, et al. Radiographic changes in primary osteogenic sarcoma following intensive chemotherapy. Radiological-pathological correlation in 63 patients. Radiology. 1982;143:355-60. 

  24. Vanderhoek M, Perlman SB, Jeraj R. Impact of the definition of peak standardized uptake value on quantification of treatment response. J Nucl Med. 2012;53:4-11. 

  25. Velasquez LM, Boellaard R, Kollia G, et al. Repeatability of 18F-FDG PET in a multicenter phase I study of patients with advanced gastrointestinal malignancies. J Nucl Med. 2009;50:1646-54. 

  26. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S-50S. 

  27. Im HJ, Kim TS, Park SY, et al. Prediction of tumour necrosis fractions using metabolic and volumetric 18F-FDG PET/CT indices, after one course and at the completion of neoadjuvant chemotherapy, in children and young adults with osteosarcoma. Eur J Nucl Med Mol Imaging. 2012;39:39-49. 

  28. Bielack SS, Kempf-Bielack B, Delling G, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20:776-90. 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로