$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

식물 세포의 자식작용에 대한 개요
Overview of Autophagy in Plant Cells 원문보기

생명과학회지 = Journal of life science, v.24 no.2 = no.166, 2014년, pp.209 - 217  

이한님 (부산대학교 생명과학과) ,  정태준 (부산대학교 생명과학과)

초록
AI-Helper 아이콘AI-Helper

다양한 진핵세포에서 자식작용은 세포질 일부를 격리시켜 분해 구획으로 수송하여 대량 분해시킨다. 자식작용은 역동적인 분해 경로이며, 수송하고자 하는 세포질에 대해 다양한 선택성을 갖고 있고, 그 활성의 조절은 영양상태와 발생 단계에 의존적이다. 최근 자식작용 연구가 많은 관심을 받고 있는데, 이는 자식작용이 흥미로운 세포학적 현상이기 때문이기도 하지만, 자식작용이 가지는 의학적, 농학적 응용 가능성 때문이기도 하다. 이를 테면, 자식작용은 암이나 퇴행성 신경질환과 연관성이 있으며 식물의 잎 노화 중에 일어나는 영양분의 재이동에도 관여하는 것으로 보인다. 본 리뷰에서는 효모, 동물 및 식물에서 보존된 핵심적 자식작용 장치의 유전학적 성분을 기술한 후, 이들 성분이 식물 자식작용의 각 단계에 필요한지 간단히 설명할 것이다. 또한 우리는 자식작용의 네가지 공통 특성, 즉 (i) 분해 과정으로서의 자식작용, (ii) 자식작용 연구에서 유동성 개념, (iii) 발생학적 및 영양분의 신호에 대한 의존성, (iv) 선택적 자식작용에 초점을 맞춘 자식작용의 다양성에 대해 논의할 것이다. 또한 식물자식작용의 세포학적, 생리학적 기능을 요약할 것이다. 이와 같은 논의를 통해 자식작용 연구에 대한 초보적 안내서를 제공하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

In a variety of eukaryotic cells, autophagy sequesters a portion of the cytoplasm and targets it to a lytic compartment for degradation in bulk. Autophagy is a dynamic process for degrading cytoplasmic cargoes with various degrees of selectivity, and its activity is tightly regulated in a nutrient- ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 비록 분해로 귀결되지 않는 수송 경로(예: 효모의 cytoplasm-to-vacuole targeting)에 Atg 단백질이 중심적 기능을 수행하기도 하지만, 자식작용의 정의를 보더라도 자식작용이 분해 경로임은 명백하다. 여기에서는 서론에서 밝힌 두 가지 주요한 단백질 분해 과정인 UPS와 자식작용에 대한 비교를 중심으로 분해 경로로서의 자식작용을 논의하고자 한다.
  • 본 리뷰에서는, 자식작용과 Atg 단백질에 대한 기본적 지식을 소개하고 자식작용의 공통적 특성을 설명한 후, 애기장대풀과 같은 식물을 이용한 최근 연구에 의해 밝혀진 모델 식물에서 자식작용의 기능을 요약할 것이다. 이 리뷰의 목적 중 하나는 자식작용 연구에 입문하고자 하는 학생을 주요 대상으로 하여 자식작용에 대한 전반적 관심사를 제시하는 것이다. 지면 관계 상 세부 내용에 관한 상세한 논의는, 본론의 각 절에서 제시된 최근의 우수한 리뷰를 참조할 것을 권유한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
자식작용의 특징은 무엇인가? 다양한 진핵세포에서 자식작용은 세포질 일부를 격리시켜 분해 구획으로 수송하여 대량 분해시킨다. 자식작용은 역동적인 분해 경로이며, 수송하고자 하는 세포질에 대해 다양한 선택성을 갖고 있고, 그 활성의 조절은 영양상태와 발생 단계에 의존적이다. 최근 자식작용 연구가 많은 관심을 받고 있는데, 이는 자식작용이 흥미로운 세포학적 현상이기 때문이기도 하지만, 자식작용이 가지는 의학적, 농학적 응용 가능성 때문이기도 하다.
자식작용이 가지는 의학적, 농학적 응용 가능성에는 무엇이 있는가? 최근 자식작용 연구가 많은 관심을 받고 있는데, 이는 자식작용이 흥미로운 세포학적 현상이기 때문이기도 하지만, 자식작용이 가지는 의학적, 농학적 응용 가능성 때문이기도 하다. 이를 테면, 자식작용은 암이나 퇴행성 신경질환과 연관성이 있으며 식물의 잎 노화 중에 일어나는 영양분의 재이동에도 관여하는 것으로 보인다. 본 리뷰에서는 효모, 동물 및 식물에서 보존된 핵심적 자식작용 장치의 유전학적 성분을 기술한 후, 이들 성분이 식물 자식작용의 각 단계에 필요한지 간단히 설명할 것이다.
대표적인 단백질의 분해과정에는 어떤 것이 있는가? 일반적으로 특정한 단백질의 양은 합성 단계뿐 아니라 수송 및 분해에 의해서도 조절될 수 있다. 단백질의 분해를 담당하는 과정으로 잘 알려진 것은 유비퀴틴-프로테아좀 시스템(ubiquitin-proteasome system, 이하 UPS로 약칭함)과 자식작용(autophagy)이 있다[32]. UPS에 의해 분해되는 단백질은 먼저 다른 단백질과의 상호작용에 의해 인식된 후 유비퀴틴화되어 결국 프로테아좀에 의해 분해된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (67)

  1. Alers, S., Loffler, A. S., Wesselborg, S. and Stork, B. 2012. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32, 2-11. 

  2. Ashford, T. P. and Porter, K. R. 1962. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12, 198-202. 

  3. Avin-Wittenberg, T., Honig, A. and Galili, G. 2012. Variations on a theme: plant autophagy in comparison to yeast and mammals. Protoplasma 249, 285-299. 

  4. Babst, M. and Odorizzi, G. 2013. The balance of protein expression and degradation: an ESCRTs point of view. Curr Opin Cell Biol 25, 489-494. 

  5. Bassham, D. C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L. J., and Yoshimoto, K. 2006. Autophagy in development and stress responses of plants. Autophagy 2, 2-11. 

  6. Birgisdottir, A. B., Lamark, T. and Johansen, T. 2013. The LIR motif - crucial for selective autophagy. J Cell Sci 126, 3237-3247. 

  7. Chung, T., Suttangkakul, A. and Vierstra, R. D. 2009. The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol 149, 220-234. 

  8. Dall'Armi, C., Devereaux, K. A. and Di Paolo, G. 2013. The role of lipids in the control of autophagy. Curr Biol 23, R33-45. 

  9. Deretic, V., Jiang, S. and Dupont, N. 2013. Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol 22, 397-406. 

  10. Fleming, A., Noda, T., Yoshimori, T. and Rubinsztein, D. C. 2011. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol 7, 9-17. 

  11. Floyd, B. E., Morriss, S. C., Macintosh, G. C. and Bassham, D. C. 2012. What to eat: evidence for selective autophagy in plants. J Integr Plant Biol 54, 907-920. 

  12. Fujita, N. and Yoshimori, T. 2011. Ubiquitination-mediated autophagy against invading bacteria. Curr Opin Cell Biol 23, 492-497. 

  13. Funderburk, S. F., Wang, Q. J. and Yue, Z. 2010. The Beclin 1-VPS34 complex - at the crossroads of autophagy and beyond. Trends Cell Biol 6, 355-362. 

  14. Geisler, S., Holmstrom, K. M., Skujat, D., Fiesel, F. C., Rothfuss, O. C., Kahle, P. J. and Springer, W. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12, 119-131. 

  15. Green, D. R., Galluzzi, L. and Kroemer, G. 2012. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333, 1109-1112. 

  16. Guiboileau, A., Avila-Ospina, L., Yoshimoto, K., Soulay, F., Azzopardi, M., Marmagne, A., Lothier, J. and Masclaux-Daubresse, C. 2013. Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability. New Phytol 199, 683-694. 

  17. Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S. and Ohsumi, Y. 2002. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129, 1181-1193. 

  18. Hofius, D., Munch, D., Bressendorff, S., Mundy, J. and Petersen, M. 2011. Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death Differ 18, 1257-1262. 

  19. Ishida, H., Yoshimoto, K., Izumi, M., Reisen, D., Yano, Y., Makino, A., Ohsumi, Y., Hanson, M. R. and Mae, T. 2008. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148, 142-155. 

  20. Jewell, J. L., Russell, R. C. and Guan, K. L. 2013. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14, 133-139. 

  21. Kim, J., Lee, H., Lee, H. N., Kim, S.-H., Shin, K. D. and Chung, T. 2013. Autophagy-related proteins are required for degradation of peroxisomes in arabidopsis hypocotyls during seedling growth. Plant Cell 25, 4956-4966. 

  22. Kim, S.-H., Kwon, C., Lee, J. H. and Chung, T. 2012. Genes for plant autophagy: functions and interactions. Mol Cells 34, 413-423. 

  23. Kimmelman, A. C. 2011. The dynamic nature of autophagy in cancer. Genes Dev 19, 1999-2010. 

  24. Klionsky, D. J. 2007. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8, 931-937. 

  25. Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., Adeli, K., Agholme, L., Agnello, M., Agostinis, P., Aguirre-Ghiso, J. A. et al. 2012. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544. 

  26. Klionsky, D. J., Baehrecke, E. H., Brumell, J. H., Chu, C. T., Codogno, P., Cuervo, A. M., Debnath, J., Deretic, V., Elazar, Z., Eskelinen, E. L. et al. 2011. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7, 1273-1294. 

  27. Klionsky, D. J., Cregg, J. M., W.A. Dunn, Jr., Emr, S. D., Sakai, Y., Sandoval, I. V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M. and Ohsumi, Y. 2003. A unified nomenclature for yeast autophagy-related genes. Dev Cell 5, 539-545. 

  28. Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushima, N., Ohsumi, Y., Uchiyama, Y., Kominami, E., Tanaka, K. and Chiba, T. 2005. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169, 425-434. 

  29. Korolchuk, V. I., Mansilla, A., Menzies, F. M. and Rubinsztein, D. C. 2009. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 33, 517-527. 

  30. Korolchuk, V. I., Menzies, F. M. and Rubinsztein, D. C. 2010. Mechanisms of cross-talk between the ubiquitinproteasome and autophagy-lysosome systems. FEBS Lett 584, 1393-1398. 

  31. Kwon, S. I., Cho, H. J., Jung, J. H., Yoshimoto, K., Shirasu, K. and Park, O. K. 2010. The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant J 64, 151-164. 

  32. Lamark, T. and Johansen, T. 2010. Autophagy: links with the proteasome. Curr Opin Cell Biol 22, 192-198. 

  33. Lamb, C. A., Yoshimori, T. and Tooze, S. A. 2013. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14, 759-774. 

  34. Levine, B., Mizushima, N. and Virgin, H. W. 2011. Autophagy in immunity and inflammation. Nature 469, 323-335. 

  35. Li, F. and Vierstra, R. D. 2012. Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci 17, 526-537. 

  36. Lilienbaum, A. 2013. Relationship between the proteasomal system and autophagy. Int J Biochem Mol Biol 4, 1-26. 

  37. Liu, Y., Burgos, J. S., Deng, Y., Srivastava, R., Howell, S. H. and Bassham, D. C. 2012. Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis. Plant Cell 24, 4635-4651. 

  38. Marty, F. 1999. Plant vacuoles. Plant Cell 11, 587-600. 

  39. Menzies, F. M., Moreau, K. and Rubinsztein, D. C. 2011. Protein misforlding disorders and macroautophagy. Curr Opin Cell Biol 2, 190-197. 

  40. Mizushima, N. 2010. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22, 132-139. 

  41. Mizushima, N. and Levine, B. 2010. Autophagy in mammalian development and differentiation. Nat Cell Biol 12, 823-830. 

  42. Mizushima, N., Sugita, H., Yoshimori, T. and Ohsumi, Y. 1998. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem 273, 33889-33892. 

  43. Nakayama, M., Kaneko, Y., Miyazawa, Y., Fujii, N., Higashitani, N., Wada, S., Ishida, H., Yoshimoto, K., Shirasu, K., Yamada, K., Nishimura, M. and Takahashi, H. 2012. A possible involvement of autophagy in amyloplast degradation in columella cells during hydrotropic response of Arabidopsis roots. Planta 236, 999-1012. 

  44. Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M. and Youle, R. J. 2010. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6, 1090-1106. 

  45. Obara, K., Sekito, T., Niimi, K. and Ohsumi, Y. 2008. The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem 283, 23972-23980. 

  46. Pandey, U. B., Nie, Z., Batlevi, Y., McCray, B. A., Ritson, G. P., Nedelsky, N. B., Schwartz, S. L., DiProspero, N. A., Knight, M. A., Schuldiner, O., et al. 2007. HDAC6 rescues neuro-degeneration and provides an essential link between autophagy and the UPS. Nature 447, 859-863. 

  47. Perez-Perez, M. E., Lemaire, S. D. and Crespo, J. L. 2012. Reactive oxygen species and autophagy in plants and algae. Plant Physiol 160, 156-164. 

  48. Rabinowitz, J. D. and White, E. 2010. Autophagy and metabolism. Science 330, 1344-1348. 

  49. Robaglia, C., Thomas, M. and Meyer, C. 2012. Sensing nutrient and energy status by SnRK1 and TOR kinases. Curr Opin Plant Biol 15, 301-307. 

  50. Russell, R. C., Tian, Y., Yuan, H., Park, H. W., Chang, Y. Y., Kim, J., Kim, H., Neufeld, T. P., Dillin, A. and Guan, K. L. 2013. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15, 741-750. 

  51. Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L. and Elazar, Z. 2007. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26, 1749-1760. 

  52. Shaid, S., Brandts, C. H., Serve, H. and Dikic, I. 2013. Ubiquitination and selective autophagy. Cell Death Differ 20, 21-30. 

  53. Sheng, X., Wei, Q., Jiang, L., Li, X., Gao, Y. and Wang, L. 2012. Different degree in proteasome malfunction has various effects on root growth possibly through preventing cell division and promoting autophagic vacuolization. PLoS One 7, e45673. 

  54. Shibata, M., Oikawa, K., Yoshimoto, K., Kondo, M., Mano, S., Yamada, K., Hayashi, M., Sakamoto, W., Ohsumi, Y. and Nishimura, M. 2013. Highly oxidized peroxisomes are selectively degraded via autophagy in arabidopsis. Plant Cell 25, 4967-4983. 

  55. Shin, R. and Schachtman, D. P. 2004. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101, 8827-8832. 

  56. Slavikova, S., Shy, G., Yao, Y., Glozman, R., Levanony, H., Pietrokovski, S., Elazar, Z. and Galili, G. 2005. The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot 56, 2839-2849. 

  57. Takeda, K., Yoshida, T., Kikuchi, S., Nagao, K., Kokubu, A., Pluskal, T., Villar-Briones, A., Nakamura, T. and Yanagida, M. 2010. Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fission yeast. Proc Natl Acad Sci USA 107, 3540-3545. 

  58. Thompson, A. R., Doelling, J. H., Suttangkakul, A. and Vierstra, R. D. 2005. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138, 2097-2110. 

  59. Toyooka, K., Moriyasu, Y., Goto, Y., Takeuchi, M., Fukuda, H. and Matsuoka, K. 2006. Protein aggregates are transported to vacuoles by a macroautophagic mechanism in nutrient-starved plant cells. Autophagy 2, 96-106. 

  60. Tsukada, M. and Ohsumi, Y. 1993. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333, 169-174. 

  61. Van der Graaff, E., Schwacke, R., Schneider, A., Desimone, M., Flugge, U. I. and Kunze, R. 2006. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141, 776-792. 

  62. Viotti, C., Kruger, F., Krebs, M., Neubert, C., Fink, F., Lupanga, U., Scheuring, D., Boutte, Y., Frescatada-Rosa, M., Wolfenstetter, S., Sauer, N., Hillmer, S., Grebe, M. and Schumacher, K. 2013. The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis. Plant Cell 25, 3434-3449. 

  63. Wada, S., Ishida, H., Izumi, M., Yoshimoto, K., Ohsumi, Y., Mae, T. and Makino, A. 2009. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149, 885-893. 

  64. Xie, Z. and Klionsky, D. J. 2007. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102-1109. 

  65. Young, A. R. and Narita, M. 2010. Connecting autophagy to senescence in pathophysiology. Curr Opin Cell Biol 2, 234-240 

  66. Zavodszky, E., Vicinanza, M. and Rubinsztein, D. C. 2013. Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation. FEBS Lett 587, 1988-1996. 

  67. Zhuang, X., Wang, H., Lam, S. K., Gao, C., Wang, X., Cai, Y. and Jiang, L. 2013. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. Plant Cell 25, 4596-4615. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로