$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

ABA형태의 삼중블록공중합체는 고무상과 유리상의 상대적 성분에 좌우되는 열가소성 탄성체와 강화 플라스틱으로써 유용하다. 이러한 물질은 다른 고분자와 혼합하여 첨가제, 강화제, 상용화제로써 기능성을 줄 수 있다. 상업적으로 유용한 대부분의 블록 공중합체는 석유로부터 유래된다. 지구상의 유한한 화석자원 공급과 석유 사용 및 채굴에 관련된 경제, 환경적 비용을 고려하면 그 대안은 매력적이다. 이러한 흐름에 더하여 미래 지속 가능한 물질의 최종 용도를 위한 설계 및 그 실행이 요구되고 있다. 본 총설에서는 재생 가능한 ABA 형태의 삼중블록 공중합체 합성과 특성을 살펴보고, 특히 공중합체의 경성부분을 위한 높은 유리 전이온도 혹은 녹는점을 지닌 식물 유래 폴리올레핀과 다당류 유래 폴리락타이드와 공중합체의 연성부분을 위한 바이오 기반, 낮은 유리 전이온도, 무결정의 탄화수소계 고분자에 대해 논의하려고 한다. 이를 위해서 다양하게 제어된 고분자 중합법은 강력한 도구임이 증명되고 있다. 이러한 혼성 고분자의 정교한 합성에 관한 연구는 재생가능성, 생분해성, 고성능을 지닌 새로운 탄성체와 강화 플라스틱의 발전을 이끌고 있다.

Abstract AI-Helper 아이콘AI-Helper

Block copolymers including ABA triblock architectures are useful as thermoplastic elastomers and toughened plastics depending on the relative glassy and rubbery content. These materials can be blended with other polymers and utilized as additives, toughening agents, and compatibilizers. Most of comm...

주제어

참고문헌 (97)

  1. G. Holden, N. R. Legge, R. Quirk, and H. E. Schroeder, Thermoplastic Elastomers., 2nded., Hanser Publishers, Munich (1996). 

  2. G. Holden, H. R. Kricheldorf, and R. P. Quirk, Thermoplastic Elastomers., 3rded., Hanser Publishers, Munich (2004). 

  3. F. S. Bates and G. H. Fredrickson, Block Copolymers-Designer Soft Materials, Phys. Today., 52, 32 (1999). 

  4. U. Nagpal, F. A. Detcheverry, P. F. Nealey, and J. J. de Pablo, Morphologies of Linear Triblock Copolymers from Monte Carlo Simulations, Macromolecules., 44, 5490 (2011). 

  5. M. W. Matsen and R. B. Thompson, Equilibrium behavior of symmetric ABA triblock copolymer melts, J. Chem. Phys., 111, 7139 (1999). 

  6. J. Xu, A. Zhang, T. Zhou, X. Cao, and Z. Xie, A study on thermal oxidation mechanism of styrene-butadiene-styrene block copolymer (SBS), Polym. Degrad. Stab., 92, 1682 (2007). 

  7. R. P. Singh, S. M. Desai, S. S. Solanky, and P. N. Thanki, Photodegradation and stabilization of styrene-butadiene-styrene rubber, J. Appl. Polym. Sci., 75, 1103 (2000). 

  8. P. B. Weisz, Basic choices and constraints on long-term energy supplies, Phys. Today., 57, 47 (2004). 

  9. K. Satoh, H. Sugiyama, and M. Kamigaito, Biomass-derived heat-resistant alicyclic hydrocarbon polymers: poly(terpenes) and their hydrogenated derivatives, Green Chem., 8, 878 (2006). 

  10. K. Satoh, S. Saitoh, and M. Kamigaito, A Linear Lignin Analogue: Phenolic Alternating Copolymers from Naturally Occurring $\beta$ -Methylstyrene via Aqueous-Controlled Cationic Copolymerization, J. Am. Chem. Soc., 129, 9586 (2007). 

  11. K. Satoh, M. Matsuda, K. Nagai, and M. Kamigaito, AAB-Sequence Living Radical Chain Copolymerization of Naturally Occurring Limonene with Maleimide: An End-to-End Sequence-Regulated Copolymer, J. Am. Chem. Soc., 132, 10003 (2010). 

  12. M. Matsuda, K. Satoh, and M. Kamigaito, 1:2-sequence-regulated radical copolymerization of naturally occurring terpenes with maleimide derivatives in fluorinated alcohol, J. Polym. Sci. PartA: Polym. Chem., 51, 1774 (2013). 

  13. M. Matsuda, K. Satoh, and M. Kamigaito, Periodically Functionalized and Grafted Copolymers via 1:2-Sequence-Regulated Radical Copolymerization of Naturally Occurring Functional Limonene and Maleimide Derivatives, Macromolecules., 46, 5473 (2013). 

  14. F. S. Bates and G. H. Fredrickson, Block Copolymer Thermodynamics: Theory and Experiment, Annu. Rev. Phys. Chem. 41, 525 (1990). 

  15. V. Avetz and P. F. W. Simon, Phase Behaviour and Morphologies of Block Copolymers, Adv. Polym. Sci., 189, 125 (2005). 

  16. C. J. Hawker and T. P. Russell, Block Copolymer Lithography: Merging "Bottom-Up" with "Top-Down" Processes, MRSBull., 30, 952 (2005). 

  17. M. A. R. Meier, J. O. Metzger, and U. S. Schubert, Plant oil renewable resources as green alternatives in polymer science, Chem. Soc. Rev., 36, 1788 (2007). 

  18. Y. Xia and R. C. Larock, Vegetable oil-based polymeric materials: synthesis, properties, and applications, Green Chem., 12, 1893 (2010). 

  19. R. Bhardwaj and A. K. Mohanty, Advances in the Properties of Polylactides Based Materials: A Review, J. Biobased Mater. Bio., 1, 191 (2007). 

  20. P. Gallezot, Process options for converting renewable feedstocks to bioproducts, Green Chem., 9, 295 (2007). 

  21. H. Wondraczek, A. Kotiaho, P. Fardim, and T. Heinze, Photoactive polysaccharides, Carbohydr. Polym., 83, 1048 (2011). 

  22. P. A. Wilbon, F. Chu, and C. Tang, Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin, Macromol. Rapid Commun., 34, 8 (2013). 

  23. A. Gandini, The irruption of polymers from renewable resources on the scene of macromolecular science and technology, Green Chem., 13, 1061 (2011). 

  24. A. C. Albertsson and I. K. Varma, Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications, Biomacromolecules., 4, 1466 (2003). 

  25. Y. Ikada and H. Tsuji, Biodegradable polyesters for medical and ecological applications, Macromol. Rapid Commun., 21, 117 (2000). 

  26. O. Dechy-Cabaret, B. Martin-Vaca, and D. Bourissou, Controlled Ring-Opening Polymerization of Lactide and Glycolide, Chem. Rev., 104, 6147 (2004). 

  27. K. J. Zhu, L. Xiangzhou, and Y. Shilin, Preparation, characterization, and properties of polylactide (PLA)-poly(ethylene glycol) (PEG) copolymers: A potential drug carrier, J. Appl. Polym. Sci., 39, 1 (1990). 

  28. H. Qian, J. Bei, and S. Wang, Synthesis, characterization and degradation of ABA block copolymer of l-lactide and $\varepsilon$ -caprolactone, Polym. Degrad. Stab., 68, 423 (2000). 

  29. D. Cohn and A. Hotovely-Salomon, Biodegradable multiblock PEO/ PLA thermoplastic elastomers: molecular design and properties, Polymer., 46, 2068 (2005). 

  30. L. Sipos, M. Zsuga, and G. Deak, Synthesis of poly (L-lactide)- block-polyisobutylene-block-poly (L-lactide), a new biodegradable thermoplastic elastomer, Macromol. Rapid Commun., 16, 935 (1995). 

  31. E. M. Frick and M. A. Hillmyer, Synthesis and characterization of polylactide-block-polyisoprene-block-polylactide triblock copolymers: new thermoplastic elastomers containing biodegradable segments, Macromol. Rapid Commun., 21, 1317 (2000). 

  32. E. M. Frick, A. S. Zalusky, and M. A. Hillmyer, Characterization of Polylactide-b-polyisoprene-b-polylactide Thermoplastic Elastomers, Biomacromolecules., 4, 216 (2003). 

  33. J. M. Yu, P. Dubois, and R. Jerome, Poly[alkyl methacrylateb- butadiene-b-alkyl methacrylate] Triblock Copolymers: Synthesis, Morphology, and Mechanical Properties at High Temperatures, Macromolecules., 29, 8362 (1996). 

  34. S. Zhang, Z. Hou, and K. E. Gonsalves, Copolymer synthesis of poly(L-lactide-b-DMS-L-lactide) via the ring opening polymerization of L-lactide in the presence of $\alpha$ , $\omega$ -hydroxylpropyl-terminated PDMS macroinitiator, J. Polym. Sci., PartA: Polym. Chem., 34, 2737 (1996). 

  35. A. Bachari, G. Belorgey, G. Helary, and G. Sauvet, Synthesis and characterization of multiblock copolymers poly[poly(L-lactide)-block- polydimethylsiloxane], Macromol. Chem. Phys., 196, 411 (1995). 

  36. H. Abe, I. Matsubara, Y. Doi, Y. Hori, and A. Yamaguchi, Physical Properties and Enzymic Degradability of Poly (3-hydroxybutyrate) Stereoisomers with Different Stereoregularities, Macromolecules., 2-7, 6018 (1994). 

  37. S. Hiki, M. Miyamoto, and Y. Kimura, Synthesis and characterization of hydroxy-terminated [RS]-poly(3-hydroxybutyrate) and its utilization to block copolymerization with l-lactide to obtain a biodegradable thermoplastic elastomer, Polymer., 41, 7369 (2000). 

  38. A. P. Pego, M. J. A. Van Luyn, L. A. Brouwer, P. B. Van Wachem, A. A. Poot, D. W. Grijpma, and J. Feijen, In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or e-caprolactone: Degradation and tissue response, J. Biomed. Mater. Res., 67A, 1044 (2003). 

  39. B. S. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, Cyclic mechanical strain regulates the development of engineered smooth muscle tissue, Nat. Biotechnol., 17, 979 (1999). 

  40. B. S. Kim and D. J. Mooney, Scaffolds for Engineering Smooth Muscle Under Cyclic Mechanical Strain Conditions, J. Biomed. Eng., 122, 210 (2000). 

  41. W. Guerin, M. Helou, J. F. Carperntier, M. Slawinski, J. M. Brusson, and S. M. Guillaume, Macromolecular engineering via ring-opening polymerization (1): L-lactide/trimethylene carbonate block copolymers as thermoplastic elastomers, Polym. Chem., 4, 1095 (2013). 

  42. M. R. Kember, J. Copley, A. Buchard, and C. K. Williams, Triblock copolymers from lactide and telechelic poly(cyclohexene carbonate), Polym. Chem., 3, 1196 (2012). 

  43. M. R. Kember, P. D. Knight, P. T. R. Reung, and C. K. Williams, Highly Active Dizinc Catalyst for the Copolymerization of Carbon Dioxide and Cyclohexene Oxide at One Atmosphere Pressure, Angew. Chem., Int. Ed., 48, 931 (2009). 

  44. B. Z. Chisholm and J. G. Zimmer, Isothermal crystallization kinetics of commercially important polyalkylene terephthalates, J. Appl. Polym. Sci., 76, 1296 (2000). 

  45. S. M. Hong, M. W. Kim, D. J. Lee, K. S. Park, T. J. Kang, and J. R. Youn, Chain Extension Effects of para-Phenylene Diisocyanate on Crystallization Behavior and Biodegradability of Poly(lactic acid)/ Poly(butylene terephthalate) Blends, Adv. Compos. Mater., 19, 331 (2010). 

  46. J. Zhou, Z. Jiang, Z. Wang, J. Zhang, J. Li, Y. Li, J. Zhang, P. Chen, and Q. Gu, Synthesis and characterization of triblock copolymer PLA-b-PBT-b-PLA and its effect on the crystallization of PLA, RSCAdvances., 3, 18464 (2013). 

  47. B. Ameduri, From Vinylidene Fluoride (VDF) to the Applications of VDF-Containing Polymers and Copolymers: Recent Developments and Future Trends, Chem. Rev., 109, 6632 (2009). 

  48. H. Kawai, The Piezoelectricity of Poly (vinylidene Fluoride), Jpn. J. Appl. Phys., 8, 975 (1969). 

  49. A. J. Lovinger, Ferroelectric Polymers, Science., 220, 1115 (1983). 

  50. V. S. D. Voet, G. O. R. van Ekenstein, N. L. Meereboer, A. H. Hofman, G. ten Brinke, and K. Loos, Double-crystalline PLLA-b- PVDF-b-PLLA triblock copolymers: preparation and crystallization, Polym. Chem. DOI: 10.1039/c3py01560b (2014). 

  51. K. S. Anderson, K. M. Schreck, and M. A. Hillmyer, Toughening Polylactide, Polym. Rev., 48, 85 (2008). 

  52. C. C. Honeker and E. L. Thomas, Impact of Morphological Orientation in Determining Mechanical Properties in Triblock Copolymer Systems, Chem. Mater., 8, 1702 (1996). 

  53. K. Stridsberg and A. C. Albertsson, Controlled ring-opening polymerization of L-lactide and 1,5-dioxepan-2-one forming a triblock copolymer, J. Polym. Sci. PartA: Polym. Chem., 38, 1774 (2000). 

  54. J. R. Sarasua, R. Prud'homme, M. Wisniewski, A. Le Borgne, and N. Spassky, Crystallization and Melting Behavior of Polylactides, Macromolecules., 31, 3895 (1998). 

  55. D. Cohn and A. H. Salomon, Designing biodegradable multiblock PCL/PLA thermoplastic elastomers, Biomaterials., 26, 2297 (2005). 

  56. J. Zhang, H. Wang, W. Jin, and J. Li, Synthesis of multiblock thermoplastic elastomers based on biodegradable poly (lactic acid) and polycaprolactone, Mater. Sci. Eng. C., 29, 889 (2009). 

  57. J. Shin, M. T. Martello, M. Shrestha, J. E. Wissinger, W. B. Tolman, and M. A. Hillmyer, Pressure-Sensitive Adhesives from Renewable Triblock Copolymers, Macromolecules., 44, 87 (2011). 

  58. C. Creton, Pressure-Sensitive Adhesives: An Introductory Course, MRSBull., 28, 434 (2003). 

  59. K. Ch. Daoulas, D. N. Theodorou, A. Roos, and C. Creton, Experimental and Self-Consistent-Field Theoretical Study of Styrene Block Copolymer Self-Adhesive Materials, Macromolecules., 37, 5093 (2004). 

  60. K. Brown, J. C. Hooker, and C. Creton, Micromechanisms of Tack of Soft Adhesives Based on Styrenic Block Copolymers, Macromol. Mater. Eng., 287, 163 (2002). 

  61. M. T. Martello and M. A. Hillmyer, Polylactide-Poly(6-methyl- $\varepsilon$ -caprolactone)-Polylactide Thermoplastic Elastomers, Macromolecules., 44, 8537 (2011). 

  62. K. J. Hanley and T. P. Lodge, Effect of dilution on a block copolymer in the complex phase window, J. Polym. Sci., PartB: Polym. Phys., 36, 3101 (1998). 

  63. A. S. Zalusky, R. Olayo-Valles, J. H. Wolf, and M. A. Hillmyer, Ordered Nanoporous Polymers from Polystyrene?Polylactide Block Copolymers, J. Am. Chem. Soc., 124, 12761 (2002). 

  64. S. C. Schmidt and M. A. Hillmyer, Morphological behavior of model poly(ethylene-alt-propylene)-b-polylactide diblock copolymers, J. Polym. Sci., PartB: Polym. Phys., 40, 2364 (2002). 

  65. R. C. Pratt, B. G. G. Lohmeijer, D. A. Long, R.M. Waymouth, and J. L. Hedrick, Triazabicyclodecene: A Simple Bifunctional Organocatalyst for Acyl Transfer and Ring-Opening Polymerization of Cyclic Esters, J. Am. Chem. Soc., 128, 4556 (2006). 

  66. M. K. Kiesewetter, E. J. Shin, J. L. Hedrick, and R. M. Waymouth, Organocatalysis: Opportunities and Challenges for Polymer Synthesis, Macromolecules., 43, 2093 (2010). 

  67. M. T. Martello, A. Burns, and M. A. Hillmyer, Bulk Ring-Opening Transesterification Polymerization of the Renewable $\delta$ -Decalactone Using an Organocatalyst, ACS Macro Lett., 1, 131 (2012). 

  68. M. Save, M. Schappacher, and A. Soum, Controlled Ring-Opening Polymerization of Lactones and Lactides Initiated by Lanthanum Isopropoxide, 1. General Aspects and Kinetics, Macromol. Chem. Phys., 203, 889 (2002). 

  69. M. W. P. C. van Rossum, M. Alberda, and L. H. W. van der Plas, Tulipaline and tuliposide in cultured explants of tulip bulb scales, Phytochemistry., 49, 723 (1998). 

  70. Y. Kato, H. Yoshida, K. Shoji, Y. Sato, N. Nakajima, and S. Ogita, A facile method for the preparation of $\alpha$ -methylene- $\gamma$ -butyrolactones from tulip tissues by enzyme-mediated conversion, TetrahedronLett., 50, 4751 (2009). 

  71. L. E. Manzer, Catalytic synthesis of $\alpha$ -methylene- $\gamma$ -valerolactone: a biomass-derived acrylic monomer, Appl. Catal., A., 272, 249 (2004). 

  72. M. Sauer, D. Porro, D. Mattanovich, and P. Branduardi, Microbial production of organic acids: expanding the markets, Trends Biotechnol., 26, 100 (2008). 

  73. Y. Xia and R. C. Larock, Vegetable oil-based polymeric materials: synthesis, properties, and applications, Green Chem., 12, 1893 (2010). 

  74. Y. Takeda, Y. Nakagawa, and K. Tomishige, Selective hydrogenation of higher saturated carboxylic acids to alcohols using a $ReO_x-Pd/SiO_2$ catalyst, Catal. Sci. Technol., 2, 2221 (2012). 

  75. M. Toba, S. I. Tanaka, S. I. Niwa, F. Mizukami, Z. Koppany, L. Guczi, K. Y. Cheah, and T. S. Tang, Synthesis of alcohols and diols by hydrogenation of carboxylic acids and esters over $Ru-Sn-Al_2O_3$ catalysts, Appl. Catal., A., 189, 243 (1999). 

  76. P. Dutta, B. Gogoi, N. N. Dass, and N. S. Sarma, Efficient organic solvent and oil sorbent co-polyesters: Poly-9-octadecenylacrylate/ methacrylate with 1-hexene, React. Funct. Polym., 73, 457 (2013). 

  77. H. F. Wong and G. D. Brown, $\beta$ -Methoxy- $\gamma$ -methylene- $\alpha$ , $\beta$ -unsaturated- $\gamma$ -butyrolactones from Artabotryshexapetalus, Phytoc hemistry., 59, 99 (2002). 

  78. M. K. Akkapeddi, Poly( $\alpha$ -methylene- $\gamma$ -butyrolactone) Synthesis, Configurational Structure, and Properties, Macromolecules., 12, 546 (1979). 

  79. J. Mosnacek and K. Matyjaszewski, Atom Transfer Radical Polymerization of Tulipalin A: A Naturally Renewable Monomer, Macromolecules., 41, 5509 (2008). 

  80. J. Mosnacek, J. A. Yoon, A. Juhari, K. Koynov, and K. Matyjaszewski, Synthesis, morphology and mechanical properties of linear triblock copolymers based on poly( $\alpha$ -methylene- $\gamma$ -butyrolactone), Polymer., 50, 2087 (2009). 

  81. W. Jakubowski and K. Matyjaszewski, Activators Regenerated by Electron Transfer for Atom-Transfer Radical Polymerization of (Meth)acrylates and Related Block Copolymers, Angew. Chem. Int. Ed., 45, 4482 (2006). 

  82. K. Min, H. Gao, and K. Matyjaszewski, Preparation of Homopolymers and Block Copolymers in Miniemulsion by ATRP Using Activators Generated by Electron Transfer (AGET), J. Am. Chem. Soc., 127, 3825 (2005). 

  83. C. J. Cavallito and T. H. Haskell, $\alpha$ -Methylene Butyrolactone from Erythronium americanum, J. Am. Chem. Soc., 68, 2332 (1946). 

  84. D. Zhang, M. A. Hillmyer, and W. B. Tolman, Catalytic Polymerization of a Cyclic Ester Derived from a "Cool" Natural Precursor, Biomacromolecules., 6, 2091 (2005). 

  85. J. Shin, Y. Lee, W. B. Tolman, and M. A. Hillmyer, Thermoplastic Elastomers Derived from Menthide and Tulipalin A, Biomacromolecules., 13, 3833 (2012). 

  86. X. Jiang, M. Vamvakaki, and R. Narain, Copper-Catalyzed Bimolecular Coupling of $\alpha$ , $\omega$ -Dibromide-Functionalized Poly( $\gamma$ -caprolactone), Macromolecules., 43, 3228 (2010). 

  87. C. W. Lee, S. Nakamura, and Y. Kimura, Synthesis and characterization of polytulipalin-g-polylactide copolymers, J. Polym. Sci., PartA: Polym. Chem., 50, 1111 (2012). 

  88. C. L. Wanamaker, M. J. Bluemle, L. M. Pitet, L. E. O'Leary, W. B. Tolman, and M. A. Hillmyer, Consequences of Polylactide Stereochemistry on the Properties of Polylactide-Polymenthide-Polylactide Thermoplastic Elastomers, Biomacromolecules., 10, 2904 (2009). 

  89. S. Wang, S. V. Kesava, E. D. Gomez, and M. L. Robertson, Sustainable Thermoplastic Elastomers Derived from Fatty Acids, Macromolecules., 46, 7202 (2013). 

  90. J. F. J. Coelho, E. Y. Carvalho, D. S. Marques, A. V. Popov, P. M. Goncalves, and M. H. Gil, Synthesis of Poly (lauryl acrylate) by Single-Electron Transfer/Degenerative Chain Transfer Living Radical Polymerization Catalyzed by $Na_2S_2O_4$ in Water, Macromol. Chem. Phys., 208, 1218 (2007). 

  91. E. F. Jr. Jordan, Side-chain crystallinity. III. Influence of side-chain crystallinity on the glass transition temperatures of selected copolymers incorporating n-octadecyl acrylate or vinyl stearate, J. Polym. Sci., PartA-1: Polym. Chem., 9, 3367 (1971). 

  92. V. K. Konaganti and G. Madras, Photocatalytic and Thermal Degradation of Poly(methyl methacrylate), Poly(butyl acrylate), and Their Copolymers, Ind. Eng. Chem. Res., 48, 1712 (2009). 

  93. D. P. Chatterjee and B. M. Mandal, Triblock Thermoplastic Elastomers with Poly(lauryl methacrylate) as the Center Block and Poly (methyl methacrylate) or Poly(tert-butylmethacrylate) as End Blocks. Morphology and Thermomechanical Properties, Macromolecules., 39, 9192 (2006). 

  94. G. W. Coates and M. A. Hillmyer, A Virtual Issue of Macromolecules: "Polymers from Renewable Resources", Macromolecules., 42, 7987 (2009). 

  95. K. Satoh, D. H. Lee, K. Nagai, and M. Kamigaito, Precision Synthesis of Bio-Based Acrylic Thermoplastic Elastomer by RAFT Polymerization of Itaconic Acid Derivatives, Macromol. Rapid Commun., 35, 161 (2014). 

  96. Y. Xu, Z. Petrovic, S. Das, and G. L. Wilkes, Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments, Polymer., 49, 4248 (2008). 

  97. T. Lebarbe, E. Ibarboure, B. Gadenne, C. Alfos, and H. Cramail, Fully bio-based poly(L-lactide)-b-poly(ricinoleic acid)-b-poly(L-lactide) triblock copolyesters: investigation of solid-state morphology and thermo-mechanical properties, Polym. Chem., 4, 3357 (2013). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로