$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Escherichia coli 에서 리보솜 조립과정에 관여하는 단백질들
Non-ribosomal Ribosome Assembly Factors in Escherichia coli 원문보기

생명과학회지 = Journal of life science, v.24 no.8 = no.172, 2014년, pp.915 - 926  

최은실 (부산대학교 생명시스템학과) ,  황지환 (부산대학교 생명시스템학과)

초록
AI-Helper 아이콘AI-Helper

리보솜은 mRNA상의 유전정보를 단백질로 번역하는 세포에 필수적인 거대복합체이다. 이러한 리보솜은 리보 핵산단백질 복합체로, rRNA와 리보솜 단백질로 이루어져있다. 리보솜 조립과정은 리보솜 단백질 이외에도 많은 조립인자들이 각 구성요소의 조립을 도움으로써 이루어진다. 세포 내 리보솜 조립과정에 참여하는 조립인자들로 GTPase, ATPase, 샤페론, RNA helicase, 수식효소 등 다양한 단백질들이 알려졌다. 리보솜 조립과정 중 이러한 조립인자들은 리보솜 단백질 또는 rRNA의 수식에 참여하거나, 리보솜 단백질들과 rRNA의 조립 등을 돕는다. 이러한 리보솜 조립인자들에 관한 유전학적, 구조적, 생화학적 실험결과들이 많이 존재하지만 정확한 리보솜 조립과정과 이러한 조립인자들의 역할에 대해서는 아직 밝혀지지 않았다. 현재까지의 연구결과를 바탕으로 E. coli의 리보솜 조립과정을 돕는 단백질들에 대하여 알아보고자 한다.

Abstract AI-Helper 아이콘AI-Helper

The ribosome is a protein synthesizing machinery and a ribonucleoprotein complex that consists of three ribosomal RNAs (23S, 16S and 5S) and 54 ribosomal proteins in bacteria. In the course of ribosome assembly, ribosomal proteins (r-protein) and rRNAs are modified, the r-proteins bind to rRNAs to f...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이 총설에서는 기존연구를 토대로 50S와 30S 리보솜 소단위체의 조립인자들에 대한 분류, 이들의 결실 또는 발현 정도의 감소가 리보솜 조립에 미치는 영향, 조립인자가 작용하는 공간적, 시간적 순서에 대해 알아보고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
원핵세포의 리보솜은 어떻게 구성되어 있나? 리보솜은 리보솜 단백질(ribosomal protein)들과 리보솜 RNA (ribosomal RNA; rRNA)들로 이루어진 리보핵산단백질 복합체로, 전령 RNA (messenger RNA; mRNA)상의 정보를 단백질로 번역하는 단계에 중심적인 역할을 한다. 원핵세포의 리보솜은 70S 입자로 이루어져 있으며, 이는 30S 리보솜 소단위체(small ribosomal subunit)와 50S 리보솜 소단위체(large ribosomal subunit)로 구성되어있다. 30S 리보솜 소단위체는 16S rRNA (1,542 nt)와 21개의 리보솜 단백질로 이루어져 있으며, 번역과정에서 mRNA와 결합하여 mRNA상의 유전정보를 해독하는 기능을 가진다.
리보솜이란 무엇인가? 리보솜은 mRNA상의 유전정보를 단백질로 번역하는 세포에 필수적인 거대복합체이다. 이러한 리보솜은 리보 핵산단백질 복합체로, rRNA와 리보솜 단백질로 이루어져있다.
PTC에서 촉매부위가 리보솜 단백질이 아닌, rRNA에 위치하는 것이 의미하는 것은? 70S 리보솜의 결정구조를 관찰해 보면, PTC에서 촉매부위는 리보솜 단백질이 아닌 rRNA에 위치한다는 것이 보고되어 있다[82]. 이는 리보솜이 사실상 리보자임(ribozyme)에 속하며, 리보솜의 기능에 있어서 RNA가 중심적인 역할을 한다는 것을 나타낸다.
질의응답 정보가 도움이 되었나요?

참고문헌 (114)

  1. Alix, J. H. and Guerin, M. F. 1993. Mutant DnaK chaperones cause ribosome assembly defects in Escherichia coli. Proc Natl Acad Sci USA 90, 9725-9729. 

  2. Bharat, A., Jiang, M., Sullivan, S. M., Maddock, J. R. and Brown, E. D. 2006. Cooperative and critical roles for both G domains in the GTPase activity and cellular function of ribosome-associated Escherichia coli EngA. J Bacteriol 188, 7992-7996. 

  3. Blombach, F., Launay, H., Zorraquino, V., Swarts, D. C., Cabrita, L. D., Benelli, D., Christodoulou, J., Londei, P. and van der Oost, J. 2011. An HflX-type GTPase from Sulfolobus solfataricus binds to the 50S ribosomal subunit in all nucleotide-bound states. J Bacteriol 193, 2861-2867. 

  4. Boddeker, N., Stade, K. and Franceschi, F. 1997. Characterization of DbpA, an Escherichia coli DEAD box protein with ATP independent RNA unwinding activity. Nucleic Acids Res 25, 537-545. 

  5. Boehringer, D., O'Farrell, H. C., Rife, J. P. and Ban, N. 2012. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis. J Biol Chem 287, 10453-10459. 

  6. Bourne, H. R., Sanders, D. A. and McCormick, F. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125-132. 

  7. Britton, R. A. 2009. Role of GTPases in bacterial ribosome assembly. Annu Rev Microbiol 63, 155-176. 

  8. Britton, R. A., Powell, B. S., Dasgupta, S., Sun, Q., Margolin, W., Lupski, J. R. and Court, D. L. 1998. Cell cycle arrest in Era GTPase mutants: a potential growth rate­regulated checkpoint in Escherichia coli. Mol Microbiol 27, 739-750. 

  9. Bugl, H., Fauman, E. B., Staker, B. L., Zheng, F., Kushner, S. R., Saper, M. A., Bardwell, J. C. and Jakob, U. 2000. RNA methylation under heat shock control. Mol Cell 6, 349-360. 

  10. Bukau, B. and Horwich, A. L. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351-366. 

  11. Bunner, A. E., Nord, S., Wikstrom, P. M. and Williamson, J. R. 2010. The Effect of ribosome assembly cofactors on in vitro 30S subunit reconstitution. J Mol Biol 398, 1-7.9 

  12. Bylund, G. O., Persson, B. C., Lundberg, L. A. and Wikstrom, P. M. 1997. A novel ribosome-associated protein is important for efficient translation in Escherichia coli. J Bacteriol 179, 4567-4574. 

  13. Bylund, G. O., Wipemo, L. C., Lundberg, L. A. and Wikstrom, P. M. 1998. RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli. J Bacteriol 180, 73-82. 

  14. Bystrom, A. S., Hjalmarsson, K. J., Wikstrom, P. M. and Bjork, G. R. 1983. The nucleotide sequence of an Escherichia coli operon containing genes for the tRNA(m1G)methyltransferase, the ribosomal proteins S16 and L19 and a 21-K polypeptide. EMBO J 2, 899-905. 

  15. Caldas, T., Binet, E., Bouloc, P., Costa, A., Desgres, J. and Richarme, G. 2000. The FtsJ/RrmJ heat shock protein of Escherichia coli is a 23 S ribosomal RNA methyltransferase. J Biol Chem 275, 16414-16419. 

  16. Carter, A. P., Clemons, W. M. Jr, Brodersen, D. E., Morgan- Warren, R. J., Hartsch, T., Wimberly, B. T. and Ramakrishnan, V. 2001. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291, 498-501. 

  17. Charollais, J., Pflieger, D., Vinh, J., Dreyfus, M. and Iost, I. 2003. The DEAD­box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. Mol Microbiol 48, 1253-1265. 

  18. Charollais, J., Dreyfus, M. and Iost, I. 2004. CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res 32, 2751-2759. 

  19. Chen, X., Court, D. L. and Ji, X. 1999. Crystal structure of ERA: a GTPase-dependent cell cycle regulator containing an RNA binding motif. Proc Natl Acad Sci USA 96, 8396-8401. 

  20. Connolly, K. and Culver, G. 2013. Overexpression of RbfA in the absence of the KsgA checkpoint results in impaired translation initiation. Mol Microbiol 87, 968-981. 

  21. Connolly, K., Rife, J. P. and Culver, G. 2008. Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA. Mol Microbiol 70, 1062-1075. 

  22. Daigle, D. M. and Brown, E. D. 2004. Studies of the interaction of Escherichia coli YjeQ with the ribosome in vitro. J Bacteriol 186, 1381-1387. 

  23. Dammel, C. S. and Noller, H. F. 1995. Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev 9, 626-637. 

  24. Datta, P. P., Wilson, D. N., Kawazoe, M., Swami, N. K., Kaminishi, T., Sharma, M. R., Booth, T. M., Takemoto, C., Fucini, P. and Yokoyama, S. 2007. Structural aspects of RbfA action during small ribosomal subunit assembly. Mol Cell 28, 434-445. 

  25. Desai, P. M. and Rife, J. P. 2006. The adenosine dimethyltransferase KsgA recognizes a specific conformational state of the 30S ribosomal subunit. Arch Biochem Biophys 449, 57-63. 

  26. Diges, C. M. and Uhlenbeck, O. C. 2001. Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA. EMBO J 20, 5503-5512. 

  27. Dutta, D., Bandyopadhyay, K., Datta, A. B., Sardesai, A. A. and Parrack, P. 2009. Properties of HflX, an enigmatic protein from Escherichia coli. J Bacteriol 191, 2307-2314. 

  28. El Hage, A., Sbai, M. and Alix, J. 2001. The chaperonin GroEL and other heat-shock proteins, besides DnaK, participate in ribosome biogenesis in Escherichia coli. Mol Gen Genet 264, 796-808. 

  29. Elles, L. M. and Uhlenbeck, O. C. 2008. Mutation of the arginine finger in the active site of Escherichia coli DbpA abolishes ATPase and helicase activity and confers a dominant slow growth phenotype. Nucleic Acids Res 36, 41-50. 

  30. Engels, S., Ludwig, C., Schweitzer, J., Mack, C., Bott, M. and Schaffer, S. 2005. The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Mol Microbiol 57, 576-591. 

  31. Feng, B., Mandava, C. S., Guo, Q., Wang, J., Cao, W., Li, N., Zhang, Y., Zhang, Y., Wang, Z. and Wu, J. 2014. Structural and functional insights into the mode of action of a universally conserved Obg GTPase. PLoS Biol 12, e1001866. 

  32. Fischer, J. J., Coatham, M. L., Eagle Bear, S., Brandon, H. E., De Laurentiis, E. I., Shields, M. J. and Wieden, H. 2012. The ribosome modulates the structural dynamics of the conserved GTPase HflX and triggers tight nucleotide binding. Biochimie 94, 1647-1659. 

  33. Goto, S., Kato, S., Kimura, T., Muto, A. and Himeno, H. 2011. RsgA releases RbfA from 30S ribosome during a late stage of ribosome biosynthesis. EMBO J 30, 104-114. 

  34. Green, R. and Noller, H. F. 1999. Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA. Biochemistry 38, 1772-1779. 

  35. Guo, Q., Goto, S., Chen, Y., Feng, B., Xu, Y., Muto, A., Himeno, H., Deng, H., Lei, J. and Gao, N. 2013. Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM and general features of the assembly process. Nucleic Acids Res 41, 2609-2620. 

  36. Guo, Q., Yuan, Y., Xu, Y., Feng, B., Liu, L., Chen, K., Sun, M., Yang, Z., Lei, J. and Gao, N. 2011. Structural basis for the function of a small GTPase RsgA on the 30S ribosomal subunit maturation revealed by cryoelectron microscopy. Proc Natl Acad Sci USA 108, 13100-13105. 

  37. Guthrie, C., Nashimoto, H. and Nomura, M. 1969. Structure and function of E. coli ribosomes. 8. Cold-sensitive mutants defective in ribosome assembly. Proc Natl Acad Sci USA 63, 384-391. 

  38. Guthrie, C., Nashimoto, H. and Nomura, M. 1969. Studies on the assembly of ribosomes in vivo. Cold Spring Harb Symp Quant Biol 34, 69-75. 

  39. Hage, A. E. and Alix, J. 2004. Authentic precursors to ribosomal subunits accumulate in Escherichia coli in the absence of functional DnaK chaperone. Mol Microbiol 51, 189-201. 

  40. Hager, J., Staker, B. L., Bugl, H. and Jakob, U. 2002. Active site in RrmJ, a heat shock-induced methyltransferase. J Biol Chem 277, 41978-41986. 

  41. Hase, Y., Yokoyama, S., Muto, A. and Himeno, H. 2009. Removal of a ribosome small subunit-dependent GTPase confers salt resistance on Escherichia coli cells. RNA 15, 1766-1774. 

  42. Hayes, F. and Hayes, D. 1971. Biosynthesis of ribosomes in E. coli: I.-Properties of ribosomal precursor particles and their RNA components. Biochimie 53, 369-382. 

  43. Helser, T. L., Davies, J. E. and Dahlberg, J. E. 1972. Mechanism of kasugamycin resistance in Escherichia coli. Nature 235, 6-9. 

  44. Himeno, H., Hanawa-Suetsugu, K., Kimura, T., Takagi, K., Sugiyama, W., Shirata, S., Mikami, T., Odagiri, F., Osanai, Y., Watanabe, D., Goto, S., Kalachnyuk, L., Ushida, C. and Muto, A. 2004. A novel GTPase activated by the small subunit of ribosome. Nucleic Acids Res 32, 5303-5309. 

  45. Holmes, K. L. and Culver, G. M. 2005. Analysis of conformational changes in 16S rRNA during the course of 30S subunit assembly. J Mol Biol 354, 340-357. 

  46. Houry, W. A., Frishman, D., Eckerskorn, C., Lottspeich, F. and Hartl, F. U. 1999. Identification of in vivo substrates of the chaperonin GroEL. Nature 402, 147-154. 

  47. Hwang, J. and Inouye, M. 2010. A Bacterial GAP-Like Protein, YihI, Regulating the GTPase of Der, an Essential GTP-Binding Protein in Escherichia coli. J Mol Biol 399, 759-772. 

  48. Hwang, J. and Inouye, M. 2006. The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli. Mol Microbiol 61, 1660-1672. 

  49. Hwang, J. and Inouye, M. 2001. An essential GTPase, der, containing double GTP-binding domains from Escherichia coli and Thermotoga maritima. J Biol Chem 276, 31415-31421. 

  50. Inoue, K., Alsina, J., Chen, J. and Inouye, M. 2003. Suppression of defective ribosome assembly in a rbfA deletion mutant by overexpression of Era, an essential GTPase in Escherichia coli. Mol Microbiol 48, 1005-1016. 

  51. Inoue, K., Chen, J., Kato, I. and Inouye, M. 2002. Specific growth inhibition by acetate of an Escherichia coli strain expressing Era-dE, a dominant negative Era mutant. J Mol Microbiol Biotechnol 4, 379-388. 

  52. Iost, I. and Dreyfus, M. 2006. DEAD-box RNA helicases in Escherichia coli. Nucleic Acids Res 34, 4189-4197. 

  53. Jain, N., Dhimole, N., Khan, A. R., De, D., Tomar, S. K., Sajish, M., Dutta, D., Parrack, P. and Prakash, B. 2009. E. coli HflX interacts with 50S ribosomal subunits in presence of nucleotides. Biochem Biophys Res Commun 379, 201-205. 

  54. Jain, C. 2008. The E. coli RhlE RNA helicase regulates the function of related RNA helicases during ribosome assembly. RNA 14, 381-389. 

  55. Jones, P. G. and Inouye, M. 1996. RbfA, a 30S ribosomal binding factor, is a cold­shock protein whose absence triggers the cold­shock response. Mol Microbiol 21, 1207-1218. 

  56. Jones, P. G., Mitta, M., Kim, Y., Jiang, W. and Inouye, M. 1996. Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc Natl Acad Sci USA 93, 76-80. 

  57. Karginov, F. V., Caruthers, J. M., Hu, Y., McKay, D. B. and Uhlenbeck, O. C. 2005. YxiN is a modular protein combining a DEx(D/H) core and a specific RNA-binding domain. J Biol Chem 280, 35499-35505. 

  58. Karginov, F. V. and Uhlenbeck, O. C. 2004. Interaction of Escherichia coli DbpA with 23S rRNA in different functional states of the enzyme. Nucleic Acids Res 32, 3028-3032. 

  59. Khaitovich, P., Tenson, T., Kloss, P. and Mankin, A. S. 1999. Reconstitution of functionally active Thermus aquaticus large ribosomal subunits with in vitro-transcribed rRNA. Biochemistry 38, 1780-1788. 

  60. Kimura, T., Takagi, K., Hirata, Y., Hase, Y., Muto, A. and Himeno, H. 2008. Ribosome-small-subunit-dependent GTPase interacts with tRNA-binding sites on the ribosome. J Mol Biol 381, 467-477. 

  61. Kirthi, N., Roy-Chaudhuri, B., Kelley, T. and Culver, G. M. 2006. A novel single amino acid change in small subunit ribosomal protein S5 has profound effects on translational fidelity. RNA 12, 2080-2091. 

  62. Koller-Eichhorn, R., Marquardt, T., Gail, R., Wittinghofer, A., Kostrewa, D., Kutay, U. and Kambach, C. 2007. Human OLA1 defines an ATPase subfamily in the Obg family of GTP-binding proteins. J Biol Chem 282, 19928-19937. 

  63. Kossen, K., Karginov, F. V. and Uhlenbeck, O. C. 2002. The carboxy-terminal domain of the DExDH protein YxiN is sufficient to confer specificity for 23S rRNA. J Mol Biol 324, 625-636. 

  64. Krzyzosiak, W., Denman, R., Nurse, K., Hellmann, W., Boublik, M., Gehrke, C., Agris, P. and Ofengand, J. 1987. In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into a functional 30S ribosome. Biochemistry 26, 2353-2364. 

  65. Lerner, C. G., Gulati, P. S. and Inouye, M. 1995. Cold­sensitive conditional mutations in Era, an essential Escherichia coli GTPase, isolated by localized random polymerase chain reaction mutagenesis. FEMS Microbiol Lett 126, 291-298. 

  66. Lewandowski, L. J. and Brownstein, B. L. 1966. An altered pattern of ribosome synthesis in a mutant of E. coli. Biochem Biophys Res Commun 25, 554-561. 

  67. Lindahl, L. 1975. Intermediates and time kinetics of the in vivo assembly of Escherichia coli ribosomes. J Mol Biol 92, 15-37. 

  68. Lindahl, L. 1973. Two new ribosomal precursor particles in E. coli. Nature 243, 170-172. 

  69. Lovgren, J. M., Bylund, G. O., Srivastava, M. K., Lundberg, L. A., Persson, O. P., Wingsle, G. and Wikstrom, P. M. 2004. The PRC-barrel domain of the ribosome maturation protein RimM mediates binding to ribosomal protein S19 in the 30S ribosomal subunits. RNA 10, 1798-1812. 

  70. MacDonald, R. E., Turnock, G. and Forchhammer, J. 1967. The synthesis and function of ribosomes in a new mutant of Escherichia coli. Proc Natl Acad Sci USA 57, 141-147. 

  71. Maki, J. A., Schnobrich, D. J. and Culver, G. M. 2002. The DnaK chaperone system facilitates 30S ribosomal subunit assembly. Mol Cell 10, 129-138. 

  72. McCutcheon, J. P., Agrawal, R. K., Philips, S. M., Grassucci, R. A., Gerchman, S. E., Clemons, W. M.,Jr, Ramakrishnan, V. and Frank, J. 1999. Location of translational initiation factor IF3 on the small ribosomal subunit. Proc Natl Acad Sci USA 96, 4301-4306. 

  73. Meier, T. I., Peery, R. B., McAllister, K. A. and Zhao, G. 2000. Era GTPase of Escherichia coli: binding to 16S rRNA and modulation of GTPase activity by RNA and carbohydrates. Microbiology 146 (Pt 5), 1071-1083. 

  74. Moll, I., Grill, S., Grundling, A. and Blasi, U. 2002. Effects of ribosomal proteins S1, S2 and the DeaD/CsdA DEADbox helicase on translation of leaderless and canonical mRNAs in Escherichia coli. Mol Microbiol 44, 1387-1396. 

  75. Morimoto, T., Loh, P. C., Hirai, T., Asai, K., Kobayashi, K., Moriya, S. and Ogasawara, N. 2002. Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis. Microbiology 148, 3539-3552. 

  76. Nicol, S. M. and Fuller-Pace, F. V. 1995. The "DEAD box" protein DbpA interacts specifically with the peptidyltransferase center in 23S rRNA. Proc Natl Acad Sci USA 92, 11681-11685. 

  77. Niereaus, K. H., Bordasch, K. and Homann, H. E. 1973. Ribosomal proteins. J Mol Biol 74, 587-597. 

  78. Nierhaus, K. H. 1991. The assembly of prokaryotic ribosomes. Biochimie 73, 739-755. 

  79. Nierhaus, K. H. and Dohme, F. 1974. Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. Proc Natl Acad Sci USA 71, 4713-4717. 

  80. Nishi, K., Morel-Deville, F., Hershey, J. W., Leighton, T. and Schnier, J. 1988. An eIF-4A-like protein is a suppressor of an Escherichia coli mutant defective in 50S ribosomal subunit assembly. Nature 336, 496-498. 

  81. Nishimura, M., Yoshida, T., Shirouzu, M., Terada, T., Kuramitsu, S., Yokoyama, S., Ohkubo, T. and Kobayashi, Y. 2004. Solution Structure of Ribosomal Protein L16 from Thermus thermophilus HB8. J Mol Biol 344, 1369-1383. 

  82. Nissen, P., Hansen, J., Ban, N., Moore, P. B. and Steitz, T. A. 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920-930. 

  83. Nord, S., Bylund, G. O., Lovgren, J. M. and Wikstrom, P. M. 2009. The RimP protein is important for maturation of the 30S ribosomal subunit. J Mol Biol 386, 742-753. 

  84. O'Farrell, H. C., Pulicherla, N., Desai, P. M. and Rife, J. P. 2006. Recognition of a complex substrate by the KsgA/Dim1 family of enzymes has been conserved throughout evolution. RNA 12, 725-733. 

  85. Peil, L., Virumae, K. and Remme, J. 2008. Ribosome assembly in Escherichia coli strains lacking the RNA helicase DeaD/CsdA or DbpA. FEBS J 275, 3772-3782. 

  86. Pillutla, R. C., Sharer, J. D., Gulati, P. S., Wu, E., Yamashita, Y., Lerner, C. G., Inouye, M. and March, P. E. 1995. Crossspecies complementation of the indispensable Escherichia coli era gene highlights amino acid regions essential for activity. J Bacteriol 177, 2194-2196. 

  87. Polach, K. J. and Uhlenbeck, O. C. 2002. Cooperative binding of ATP and RNA substrates to the DEAD/H protein DbpA. Biochemistry 41, 3693-3702. 

  88. Prud'homme-Genereux, A., Beran, R. K., Iost, I., Ramey, C. S., Mackie, G. A. and Simons, R. W. 2004. Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold­shock protein, CsdA: evidence for a 'cold shock degradosome'. Mol Microbiol 54, 1409-1421. 

  89. Roy Chaudhuri, B., Kirthi, N., Kelley, T. and Culver, G. M. 2008. Suppression of a cold­sensitive mutation in ribosomal protein S5 reveals a role for RimJ in ribosome biogenesis. Mol Microbiol 68, 1547-1559. 

  90. Sato, A., Kobayashi, G., Hayashi, H., Yoshida, H., Wada, A., Maeda, M., Hiraga, S., Takeyasu, K. and Wada, C. 2005. The GTP binding protein Obg homolog ObgE is involved in ribosome maturation. Genes Cells 10, 393-408. 

  91. Sayed, A., Matsuyama, S. and Inouye, M. 1999. Era, an Essential Escherichia coli Small G-Protein, Binds to the 30S Ribosomal Subunit. Biochem Biophys Res Commun 264, 51-54. 

  92. Schuwirth, B. S., Borovinskaya, M. A., Hau, C. W., Zhang, W., Vila-Sanjurjo, A., Holton, J. M. and Cate, J. H. 2005. Structures of the bacterial ribosome at 3.5 A resolution. Science 310, 827-834. 

  93. Selmer, M., Dunham, C. M., Murphy, F. V. 4th., Weixlbaumer, A., Petry, S., Kelley, A. C., Weir, J. R. and Ramakrishnan, V. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935-1942. 

  94. Sharma, M. R., Barat, C., Wilson, D. N., Booth, T. M., Kawazoe, M., Hori-Takemoto, C., Shirouzu, M., Yokoyama, S., Fucini, P. and Agrawal, R. K. 2005. Interaction of Era with the 30S ribosomal subunit: implications for 30S subunit assembly. Mol Cell 18, 319-329. 

  95. Sharpe Elles, L. M., Sykes, M. T., Williamson, J. R. and Uhlenbeck, O. C. 2009. A dominant negative mutant of the E. coli RNA helicase DbpA blocks assembly of the 50S ribosomal subunit. Nucleic Acids Res 37, 6503-6514. 

  96. Shields, M. J., Fischer, J. J. and Wieden, H. 2009. Toward understanding the function of the universally conserved GTPase HflX from Escherichia coli: a kinetic approach. Biochemistry 48, 10793-10802. 

  97. Sohlberg, B., Lundberg, U., Hartl, F. U. and von Gabain, A. 1993. Functional interaction of heat shock protein GroEL with an RNase E-like activity in Escherichia coli. Proc Natl Acad Sci USA 90, 277-281. 

  98. Spillmann, S., Dohme, F. and Nierhaus, K. H. 1977. Assembly in Vitro of the 50 S subunit from Escherichia coli ribosomes: Proteins essential for the first heat-dependent conformational change. J Mol Biol 115, 513-523. 

  99. Suzuki, S., Tatsuguchi, A., Matsumoto, E., Kawazoe, M., Kaminishi, T., Shirouzu, M., Muto, Y., Takemoto, C. and Yokoyama, S. 2007. Structural characterization of the ribosome maturation protein, RimM. J Bacteriol 189, 6397-6406. 

  100. Tan, J., Jakob, U. and Bardwell, J. C. 2002. Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase. J Bacteriol 184, 2692-2698. 

  101. Thammana, P. 1974. Methylation of 16S RNA during ribosome assembly in vitro. Nature 251, 682-686. 

  102. Thieringer, H. A., Jones, P. G. and Inouye, M. 1998. Cold shock and adaptation. Bioessays 20, 49-57. 

  103. Tomar, S. K., Dhimole, N., Chatterjee, M. and Prakash, B. 2009. Distinct GDP/GTP bound states of the tandem G-domains of EngA regulate ribosome binding. Nucleic Acids Res 37, 2359-2370. 

  104. Traub, P. and Nomura, M. 1968. Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc Natl Acad Sci USA 59, 777-784. 

  105. Trubetskoy, D., Proux, F., Allemand, F., Dreyfus, M. and Iost, I. 2009. SrmB, a DEAD-box helicase involved in Escherichia coli ribosome assembly, is specifically targeted to 23S rRNA in vivo. Nucleic Acids Res 37, 6540-6549. 

  106. Tsu, C. A. and Uhlenbeck, O. C. 1998. Kinetic analysis of the RNA-dependent adenosinetriphosphatase activity of DbpA, an Escherichia coli DEAD protein specific for 23S ribosomal RNA. Biochemistry 37, 16989-16996. 

  107. Tu, C., Zhou, X., Tropea, J. E., Austin, B. P., Waugh, D. S., Court, D. L. and Ji, X. 2009. Structure of ERA in complex with the 3' end of 16S rRNA: implications for ribosome biogenesis. Proc Natl Acad Sci USA 106, 14843-14848. 

  108. Wang, S., Hu, Y., Overgaard, M. T., Karginov, F. V., Uhlenbeck, O. C. and McKay, D. B. 2006. The domain of the Bacillus subtilis DEAD-box helicase YxiN that is responsible for specific binding of 23S rRNA has an RNA recognition motif fold. RNA 12, 959-967. 

  109. Williamson, J. R. 2005. Assembly of the 30S ribosomal subunit. Q Rev Biophys 38, 397-403. 

  110. Williamson, J. R. 2003. After the ribosome structures: how are the subunits assembled? RNA 9, 165-167. 

  111. Wittinghofer, A. and Pal, E. F. 1991. The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16, 382-387. 

  112. Xia, B., Ke, H., Shinde, U. and Inouye, M. 2003. The role of RbfA in 16S rRNA processing and cell growth at low temperature in Escherichia coli. J Mol Biol 332, 575-584. 

  113. Xu, Z., O'Farrell, H. C., Rife, J. P. and Culver, G. M. 2008. A conserved rRNA methyltransferase regulates ribosome biogenesis. Nat Struct Mol Biol 15, 534-536. 

  114. Yoshikawa, A., Isono, S., Sheback, A. and Isono, K. 1987. Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12. Mol Gen Genet 209, 481-488. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로