최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국정밀공학회지 = Journal of the Korean Society for Precision Engineering, v.31 no.10, 2014년, pp.955 - 965
신승호 (한양대학교 기계공학과) , 김아름 (한양대학교 기계공학과) , 정혜미 (한양대학교 기계공학과) , 엄석기 (한양대학교 기계공학과)
Transport phenomena of reactant and product are directly linked to intrinsic inhomogeneous random configurations of catalyst layer (CL) that consist of ionomer, carbon-supported catalyst (Pt/C), and pores. Hence, electrochemically active surface area (ECSA) of Pt/C is dominated by geometrical morpho...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
Bachmat20,21의 정의에 의해 대표요소면적이 만족하도록 선정한 조건은 무엇인가? | 1) 촉매층이 갖는 마이크로, 나노 크기의 비등방성 효과를 반영할 수 있도록 충분히 작은 영역일 것. 2) 선정된 영역내의 3상 분포가 유의미한 통계적 평균값을 갖도록 충분히 많은 입자를 포함하고 있을 것. | |
촉매층의 무작위적인 기하학적 구조에 물질전달이 직접적으로 영향을 미치는 것을 보여주는 것은 무엇인가? | 일반적으로 촉매층은 얇고 균일한 다공성 물질로 가정되어 촉매층 모델링에 사용된다.4-6 하지만 마이크로, 나노 크기 촉매층의 주사전자현미경(SEM) 또는 투사전자현미경(TEM) 이미지는 촉매층의 무작위적인 기하학적 구조에 물질전달이 직접적으로 영향을 미침을 보여준다.7 | |
고분자 전해질 연료전지(PEMFC)의 촉매층은 어떤 구조인가? | 고분자 전해질 연료전지(PEMFC)의 촉매층(catalyst layer) 은 이오노머 (ionomer), 탄소지지 백금 촉매(Pt/C), 기공으로 구성된 복잡하고 무작위적인 기하학적 비등방성 구조를 이루고 있다.1-3 특히 이러한 3상 물질이 유효하게 연결된 물질전달 통로의 표면에서 PEMFC 구동을 위한 전기화학적 반응이 발생하기 때문에 촉매층의 구조는 전체 연료전지의 효율을 결정하는 중요한 요소로 작용한다. |
Mench, M. M., "Fuel Cell Engines," John Wiley & Sons, pp. 1-61, 2008.
Tabe, Y., Nishino, M., Takamatsu, H., and Chikahisa, T., "Effects of Cathode Catalyst Layer Structure and Properties Dominating Polymer Electrolyte Fuel Cell Performance," Journal of The Electrochemical Society, Vol. 158, No. 10, pp. B1246-B1254, 2011.
Siegel, N. P., Ellis, M. W., Nelson, D. J., and von Spakovsky, M. R., "Single Domain PEMFC Model Based on Agglomerate Catalyst Geometry," Journal of Power Sources.Vol. 115, No. 1, pp. 81-89, 2003.
Marr, C. and Li, X., "Composition and Performance Modelling of Catalyst Layer in a Proton Exchange Membrane Fuel Cell," Journal of Power Sources, Vol. 77, No. 1, pp. 17-27, 1999.
Tiedemann, W. and Newman, J., "Maximum Effective Capacity in an Ohmically Limited Porous Electrode," Journal of The Electrochemical Society, Vol. 122, No. 11, pp. 1482-1485, 1975.
Khajeh-Hosseini-Dalasm, N., Kermani, M., Moghaddam, D. G., and Stockie, J., "A Parametric Study of Cathode Catalyst Layer Structural Parameters on the Performance of a Pem Fuel Cell," International journal of hydrogen energy, Vol. 35, No. 6, pp. 2417-2427, 2010.
Proietti, E., Jaouen, F., Lefevre, M., Larouche, N., and Tian, J., et al., "Iron-based Cathode Catalyst with Enhanced Power Density in Polymer Electrolyte Membrane Fuel Cells," Nature communications, Vol. 2, Paper No. 416, 2011.
Hao, L. and Cheng, P., "Lattice Boltzmann Simulations of Anisotropic Permeabilities in Carbon Paper Gas Diffusion Layers," Journal of Power Sources, Vol. 186, No. 1, pp. 104-114, 2009.
Hao, L. and Cheng, P., "Lattice Boltzmann Simulations of Water Transport in Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell," Journal of Power Sources, Vol. 195, No. 12, pp. 3870-3881, 2010.
Joshi, A. S., Grew, K. N., Peracchio, A. A., and Chiu, W. K. S., "Lattice Boltzmann Modeling of 2D Gas Transport in a Solid Oxide Fuel Cell Anode," Journal of Power Sources, Vol. 164, No. 2, pp. 631-638, 2007.
Joshi, A. S., Peracchio, A. A., Grew, K. N., and Chiu, W. K. S., "Lattice Boltzmann method for continuum, multi-component mass diffusion in complex 2D geometries," Journal of Physics D: Applied Physics, Vol. 40, No. 9, Paper No. 2961, 2007.
Wang, G., Mukherjee, P. P., and Wang, C.-Y., "Direct Numerical Simulation (DNS) Modeling of PEFC Electrodes Part I. Regular microstructure," Electrochimica Acta, Vol. 51, No. 15, pp. 3139-3150, 2006.
Wang, G., Mukherjee, P. P., and Wang, C.-Y., "Direct Numerical Simulation (DNS) Modeling of PEFC Electrodes Part II. Random microstructure," Electrochimica Acta.Vol. 51, No. 15, pp. 3151-3160, 2006.
Mukherjee, P. P. and Wang, C.-Y., "Stochastic Microstructure Reconstruction and Direct Numerical Simulation of the PEFC Catalyst Layer," Journal of The Electrochemical Society, Vol. 153, No. 5, pp. A840-A849, 2006.
Luo, G., Ji, Y., Wang, C.-Y., and Sinha, P. K., "Modeling Liquid Water Transport in Gas Diffusion Layers by Topologically Equivalent Pore Network," Electrochimica Acta, Vol. 55, No. 19, pp. 5332-5341, 2010.
Sinha, P. K. and Wang, C.-Y., "Pore-network Modeling of Liquid Water Transport in Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell," Electrochimica Acta, Vol. 52, No. 28, pp. 7936-7945, 2007.
Stauffer, D. and Aharony, A., "Introduction to Percolation Theory," Taylor and Francis, pp. 15-56, 1994.
Suzuki, A., Hattori, T., Miura, R., Tsuboi, H., Hatakeyama, N., and et al., "Porosity and Pt Content in the Catalyst Layer of PEMFC: Effects on Diffusion and Polarization Characteristics," Int. J. Electrochem. Sci, Vol. 5, No. pp. 1948-1961, 2010.
Wang, Y. and Chen, K. S., "Effect of Spatially-Varying GDL Properties and Land Compression on Water Distribution in PEM Fuel Cells," Journal of the Electrochemical Society, Vol. 158, No. 11, pp. B1292-B1299, 2011.
Bachmat, Y. and Bear, J., "Macroscopic Modelling of Transport Phenomena in Porous Media. 1: The continuum approach," Transport in Porous Media, Vol. 1, No. 3, pp. 213-240, 1986.
Bachmat, Y. and Bear, J., "Macroscopic Modelling of Transport Phenomena in Porous Media. 2: Applications to Mass, Momentum and Energy Transport," Transport in Porous Media, Vol. 1, No. 3, pp. 241-269, 1986.
Eikerling, M. and Kornyshev, A. A., "Modelling the Performance of the Cathode Catalyst Layer of Polymer Electrolyte Fuel Cells," Journal of Electroanalytical Chemistry, Vol. 453, No. 1, pp. 89-106, 1998.
Bear, J. and Bachmat, Y., "Introduction to Modeling of Transport Phenomena in Porous Media," Springer, pp. 3-42, 1990.
Bear, J., "Dynamics of Fluids in Porous Media," Courier Dover Publications, pp. 1-26, 2013.
Zhang, D., Zhang, R., Chen, S., and Soll, W. E., "Pore Scale Study of Flow in Porous Media: Scale Dependency, REV, and Statistical REV," Geophysical Research Letters, Vol. 27, No. 8, pp. 1195-1198, 2000.
Kanit, T., Forest, S., Galliet, I., Mounoury, V., and Jeulin, D., "Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach," International Journal of Solids and Structures, Vol. 40, No. 13-14, pp. 3647-3679, 2003.
Costanza-Robinson, M. S., Estabrook, B. D., and Fouhey, D. F., "Representative Elementary Volume Estimation for Porosity, Moisture Saturation, and Air-Water Interfacial Areas in Unsaturated Porous Media: Data Quality Implications," Water Resources Research, Vol. 47, No. 7, 2011.
Li, J., Zhang, L., Wang, Y., and Fredlund, D., "Permeability tensor and Representative Elementary Volume of Saturated Cracked Soil," Canadian Geotechnical Journal, Vol. 46, No. 8, pp. 928-942, 2009.
Uchida, M., Aoyama, Y., Eda, N., and Ohta, A., "Investigation of the Microstructure in the Catalyst Layer and Effects of Both Perfluorosulfonate Ionomer and PTFE-Loaded Carbon on the Catalyst Layer of Polymer Electrolyte Fuel Cells," Journal of The Electrochemical Society, Vol. 142, No. 12, pp. 4143-4149, 1995.
Hammersley, J. M., "Percolation processes; II. The connective constant," Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 53, No. 3, pp. 642-645, 1957.
Hammersley, J. M., "Monte Carlo methods for solving multivariable problems," Annals New York Academy of Sciences, Vol. 86, No. 3, pp. 844-874, 1960.
Jung, H.-M., Choi, W., and Um, S., "Path-percolation Modeling of the Electrical Property Variations with Statistical Procedures in Spatially-disordered Inhomogeneous Media," Journal of the Korean Physical Society, Vol. 56, No. 2, pp. 591-597, 2010.
Hoshen, J. and Kopelman, R., "Percolation and Cluster Distribution. I. Cluster multiple labeling technique and critical concentration algorithm," Physical Review B, Vol. 14, No. 8, Paper No. 3438, 1976.
Cochran, W. G., "Sampling Techniques," John Wiley & Sons, 2007.
Montgomery, D. C. and Runger, G. C., "Applied Statistics and Probability for Engineers," John Wiley & Sons, 2010.
Murthy, D. P., Xie, M., and Jiang, R., "Weibull Models," John Wiley & Sons, 2004.
Christensen, K. and Moloney, N. R., "Complexity and Criticality," Imperial College Press, pp. 55-102, 2005.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.