$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 인공신경망 기반 호텔 부도예측모형 개발
A Development of Hotel Bankruptcy Prediction Model on Artificial Neural Network 원문보기

韓國컴퓨터情報學會論文誌 = Journal of the Korea Society of Computer and Information, v.19 no.10, 2014년, pp.125 - 133  

최성주 (원광대학교 대학원 정보관리학과) ,  이상원 (원광대학교 정보전자상거래학부)

초록
AI-Helper 아이콘AI-Helper

본 논문에서는 호텔경영을 위한 인공신경망 기반의 부도예측 모형을 개발한다. 부도예측 모형은 호텔에서 관리하는 사업장의 사업성과 이터를 바탕으로 부도 가능성을 평가하여 호텔 전체사업의 부도를 예측하는 특징을 가진다. 부도예측을 위한 전통적인 통계기법다변량 판별분석이나 로짓분석 등이 있는데, 본연구는 이들보다 우수한 예측정확성을 갖는 인공신경망 기법을 이용해서 연구를 진행하였다. 이를 위해 우선 우수기업 100개와 도산기업 100개를 선정하여 전체 실험데이터를 구성하고, 뉴로쉘이라는 인공신경망 도구를 이용하여 부도예측모형을 구성하였다. 본 모형 설계와 실험은 서비스드 레지던스 호텔에서 관리하는 각 브랜치의 부도예측과 재무건전성을 판단하기에 효율성이 높아 호텔 경영의 의사결정에 많은 도움이 될 것이다.

Abstract AI-Helper 아이콘AI-Helper

This paper develops a bankruptcy prediction model on an Artificial Neural Network for hotel management. A bankruptcy prediction model has a specific feature to predict a bankruptcy of the whole hotel business after evaluate bankruptcy possibility on the basis of business performance data of each bra...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The chapter is composed of two parts: one attempts to model bankruptcy prediction; the other provides the results of experiments using the models. For the design of the model, we select a tool, NeuroShell, for artificial neural networks, and establish bankruptcy prediction models. And then, for the experiment, we use data from 100 failed enterprises that went into bankruptcy between 2007 and 2009 as well as 100 successful enterprises that were not subject to bankruptcy.
  • An experiment utilizing our bankruptcy prediction model is performed in two phases: developing experimental models and analyzing their results.
  • The four groups are Group-A for Univariate Analysis, Group-B for Logit Analysis, Group C for Multivariate Discriminant Analysis, and Group D for Artificial Neural Network (Table 3). Group A collected input variables by performing Univariate Analysis on the basis of a t-test and selecting 8 variables with top significant level. Group B collected 8 input variables by performing Logit Analysis on the basis of an optional variable-selection method.
  • After preprocessing for experiments, we performed experiments with the above input variables for each group, Group A, Group B, Group C, and Group D, in NeuroShell. In order to increase the reliability of the experiment, we measured the accuracy rates of bankruptcy 10 times and calculated the average values of each group.

대상 데이터

  • And then, for the experiment, we use data from 100 failed enterprises that went into bankruptcy between 2007 and 2009 as well as 100 successful enterprises that were not subject to bankruptcy. While using NeuroShell on the Artificial Neural Network, we allocated the 200 enterprises into 100 examples for training, 50 examples for testing, and 50 examples for verification. In the last chapter, we make conclusions by explaining both our research contributions and limitations, with a consideration of further studies.
  • The Ascott Limited is a Singapore company that has grown to be the world’s largest international serviced residence owner-operator. It has over 23,000 operating serviced residence units in key cities in the Asia Pacific, European, and Gulf regions, as well as over 10,000 units that are under development, making a total of more than 33,000 units in over 200 properties. The company operates three brands: Ascott, Citadines, and Somerset.
  • For the experiment, this research used data from 100 failed enterprises that went bankrupt between 2007 and 2009 as well as 100 successful enterprises that did not fall into bankruptcy. Using NeuroShell on the Artificial Neural Network, we allocated 200 enterprises into 100 examples for training, 50 examples for testing, and 50 examples for verification.
  • For the experiment, this research used data from 100 failed enterprises that went bankrupt between 2007 and 2009 as well as 100 successful enterprises that did not fall into bankruptcy. Using NeuroShell on the Artificial Neural Network, we allocated 200 enterprises into 100 examples for training, 50 examples for testing, and 50 examples for verification.

이론/모형

  • Group B collected 8 input variables by performing Logit Analysis on the basis of an optional variable-selection method. Group C collected 8 input variables by performing Multivariate Discriminant Analysis on the basis of an optional variable-selection method. Group D collected 8 input variables by performing Artificial Neural Network on NeuroShell.
본문요약 정보가 도움이 되었나요?

참고문헌 (23)

  1. D. Fletcher and E. Goss, "A comparison of the ratios of successful industrial enterprises with those of failed companies," The Certified Public Account, Vol. 2, June, 1932. 

  2. R. F. Smith and A. H. Winakor, "Change in the financial structure of unsuccessful industrial corporations," Bureau of Business Research of University of Illinois, January, 1935. 

  3. C. L. Merwin, "Financial small corporations in five manufacturing industries 1926-1936," National Bureau of Research, Vol. 105, January, 1942. 

  4. W. Beaver, "Financial ratios as predictors of failure-empirical research in accounting; selected studies," Journal of Accounting Research, Vol. 5, pp. 71-111, January, 1966. 

  5. E. I. Altman, "Financial ratios, discriminant analysis and the prediction of corporate bankruptcy," The Journal of Finance, Vol. 3, pp. 589-609, September, 1968. 

  6. G. A. Hanweak, "Predicting bank failure," Research Papers in Banking and Economics, Financial Studies, Section, FRB, Vol. 11, November, 1977. 

  7. D. Martin, "Early warning of bank failure: a logit regression approach," Journal of Banking and Finance, Vol. 1, pp. 249-276, January, 1977. 

  8. W. B. Johnson, "The corss-sectional stability of financial ration patterns," Journal of Financeial and Quantitative Analysis, Vol. 14, pp. 1035-1048, January, 1979. 

  9. I. G. Dambolena and S. I. Khoury, "Ratio stability and corporate failure," Journal of Finance, Vol. 35, No.4, pp. 1017-1026, December, 1980. 

  10. J. Ohlson, "Financial ratios and the probabilistic prediction of bankruptcy," Journal of Accounting Research, Vol. 1, pp. 109-131, March, 1980. 

  11. G. W. Emery and K. O. Cogger, Journal of Accounting Research, Vol. 20, No. 2, June, 1982. 

  12. M. J. Gombola and J. E. Ketz, "Financial ratio patterns in retail and manufacturing organizations," Financial Management, Vol. 2, pp. 45-56, June, 1983. 

  13. K. Takahashi, Y. Takahashi and K. Watase, "Corporate bankruptcy prediction in Japan," Journal of Banking and Finance, Vol. 2, pp. 229-247, June, 1984. 

  14. M. E. Zmijewski, "Methodological issues related to the estimation of financial distress prediction models," Journal of Accounting Research, Vol. 22, pp. 59-82, January, 1984. 

  15. K. C. Laudon and C. G. Traver, Management Information Systems, Prentice-Hall, 2014. 

  16. E. Turban, J. E. Aronson and T-P. Liang, Decision Support Systems & Intelligent Systems, Pearson, 2010. 

  17. E. Turban and D. King, Electronic Commerce, Pearson, 2013. 

  18. E. Turban, L. Volonino and G. R. Wood, Information Technology for Management, Pearson, 2014. 

  19. R. Elam, "The effect of lease data on the predictive ability of financial ratios," The Accounting Review, Vol. 50, pp. 24-43, January, 1975. 

  20. G. Foster, "Quarterly accounting data: time-series properties and predictive-ability results," The Accounting Review, Vol. 1, pp. 1-21, January, 1977. 

  21. C. L. Norton and R. E. Smith, "A comparison of general price level and historical cost financial statements in the prediction of bankruptcy," The Accounting Review, Vol. 1, pp. 72-87, January, 1979. 

  22. S. Jung, Y. Heo, H. Jo, J. Kim and S. Choi, "Fuzzy Theory and Bayesian Update-Based Traffic Prediction and Optimal Path Planning for Car Navigation System using Historical Driving Information," Journal of the Korea Society of Computer and Information, Vol. 14, No. 11, pp. 159-167, November, 2009. 

  23. Y. Cho, S. Moon and K. Ryu, "Clustering Analysis by Customer Feature based on SOM for Predicting Purchase Pattern in Recommendation System," Journal of the Korea Society of Computer and Information, Vol. 19, No. 2, pp. 193-200, February, 2009. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로