$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

유해 와편모조류 Cochlodinium polykrikoides와 규조류 Skeletonema sp.의 종간경쟁에서 용존 유기 영양염의 중요성
The Importance of Dissolved Organic Nutrients on the Interspecific Competition between the Harmful Dinoflagellate Cochlodinium polykrikoides and the Diatom Skeletonema sp. 원문보기

바다 : 한국해양학회지 = The sea : the journal of the Korean society of oceanography, v.19 no.4, 2014년, pp.232 - 242  

권형규 (부경대학교 해양과학공동연구소) ,  김현정 (부경대학교 해양학과) ,  양한섭 (부경대학교 해양학과) ,  오석진 (부경대학교 해양학과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 유해 와편모조류 Cochlodinium polykrikoides와 규조류 Skeletonema sp.의 용존 유기 영양염에 대한 이용 및 흡수능력을 통해서 종간 경쟁관계를 파악하였다. C. polykrikoides와 Skeletonema sp.는 용존 무기 질소와 무기인 이외에 다양한 용존 유기 질소와 유기 인을 이용하여 성장하였다. 이는 용존 무기 질소 또는 무기 인이 제한 영양염으로 작용하는 환경에서 중요한 생존전략으로 작용할 것이다. Urea와 glycerophospahte(glycero-P)의 흡수동력학 실험으로부터 도출된 반포화상수(Ks) 값은 C. polykrikoides가 Skeletonema sp.에 비해서 낮은 값을 보였다. 이는 Skeletonema sp.가 C. polykrikoides에 비해서 urea와 glycero-P와 같은 유기 영양염에 대한 친화성이 높음을 의미한다. 하지만 Skeletonema sp.가 유기 영양염에 대한 친화성이 높을지라도 C. polykrikoides가 ${\alpha}$ (${\rho}_{max}/Ks$) 값이 높아, 저농도의 영양염 조건(

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • , 1989). 따라서 영양염 흡수 실험을 수행하기 전에 영양염 흡수의 경시적인 변화를 파악하였다. 먼저, 세포내 질소와 인을 고갈시키기 위해 질소 또는 인원이 포함되지 않은 AK 인공해수를 기반으로 한 L1배지에서 C.
  • polykrikoides와규조류 Skeletonema sp.의 단일 배양 조건하에서 용존 유기 영양염에 대한 이용 및 흡수능력의 결과를 바탕으로 종간 경쟁관계를 파악하였으며, 이러한 결과를 향후 수치모델을 구현하기 위한 자료로 활용하고자 하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
용존 유기 영양염이 해양으로 유입되는 경로는 무엇인가? , 1991). 이러한 용존 유기 영양염은 미세 조류나 박테리아의 대사작용에 의한 배출(excretion), 동물플랑크톤의 섭식작용 및 육상으로부터 공급 등의 경로를 거쳐 해양으로 유입되며, 그 조성은 매우 복잡하고 다양하다(Antia et al., 1991).
해수 중 영양염은 무엇으로 구분되는가? 해수 중 영양염은 용존 무기 영양염과 용존 유기 영양염으로 구분되며, 전자는 용존 무기 질소(DIN; dissolved inorganic nitrogen)와 용존 무기 인(DIP; dissolved inorganic phosphorus)과 같은 제한 영양염이며, 후자는 여러 가지 분자량을 가지는 화합물이다. 일반적으로 식물플랑크톤은 용존 무기 영양염을 성장에 이용하지만, 용존 무기 영양염이 부족한 환경에서는 수주 내 존재하는 다양한 기원의 용존 유기 질소(DON; dissolved organic nitrogen)와 용존 유기 인(DOP; dissolved organic phosphorus)와 같은 유기 영양염을 성장에 이용하게 된다(Antia et al.
적조를 일으키는 종인 유해성 와편모조류는 우리나라에 언제, 어디서 처음으로 발생하였는가? , 2013a). 우리나라에서는 1982년 진해만에서 처음 발생한 이래 매년 여름철 마다 광범위 하게 발생하여 경제적 손실과 해양생태계의 황폐화를 초래하고 있다. 특히, 지난 2013년에는 1995년의 746억원 이후 최고 규모인 약 249억원의 손실을 발생시켰다(Park et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (69)

  1. Antia, N.J., P.J. Harrison and L. Oliveira, 1991. Phycological reviews: the role of dissolved organic nitrogen in phytoplankton nutrition, cell biology, and ecology. Phycol., 30: 1-89. 

  2. Auro, M.E. and W.P. Cochlan, 2012. Nitrogen utilization and toxin production by two diatoms of the Pseudo-nitzschia pseudodelicatissima complex: P. cuspidata and P. fryxelliana. J. Phycol., 49: 156-169. 

  3. Baba, T., S. Hiyama and T. Tainaka, 2001. Vertical migration of the toxic dinoflagellate Gymnodinium catenatum and toxicity of cultures oyster in Senzaki Bay, Yamaguchi Prefecture. Bull. Plankton Soc. Jpn., 48: 95-99. 

  4. Benitez-Nelson, C.R., 2000. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev., 51: 109-135. 

  5. Berman, T., and D.A. Bronk, 2003. Dissolved organic nitrogen: A dynamic participant in aquatic ecosystems. Aquat. Microbial Ecol., 31: 279-305. 

  6. Brand, L.E., R.R.L. Guillard and L.S. Murphy, 1981. A method for the rapid and precies determination of acclimated phytoplankton reproduction rates. J. Plankton Res., 3: 193-201. 

  7. Cermeno, P., J.B. Lee, K. Wyman, O. Schofield and P.G. Falkowski. 2011. Competitive dynamics in two species of marine phytoplankton under non-equilibrium conditions. Mar. Ecol. Prog. Ser., 429: 19-28. 

  8. Coleman, A.W., 1985. Diversity of plastid DNA configuration among classes of eukaryote algae. J. Phycol., 21: 1-16. 

  9. Collier, J.L., B. Brahamsha and B. Palenik, 1999. The marine cyanobacterium Synechococcus sp. WH7805 requires urease(urea amidohydrolase, EC 3.5.1.5) to utilize urea as a nitrogen source: molecular-genetic and biochemical analysis of the enzyme. Microbiol., 145: 447-459. 

  10. Cowey, C.B. and E.D.S. Corner, 1966. The amino-acid composition of certain unicellular algae, and of the faecal pellets produced by Calanus finmarchicus when feeding on them. In: Some contemporary studies in marine science, edited by Barnes, H. Allen and Unwin, London, pp. 225-231. 

  11. Dugdale, R.C., 1967. Nutrient limitation in the sea: dynamic, identification, and significance. Limnol. Oceanogr., 12: 685-695. 

  12. Eppley, R.W., J.N. Rogers and J.J. McCarthy, 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr., 14: 912-920. 

  13. Fan, C., P.M. Glibert, J. Alexander and M.W. Lomas, 2003. Characterization of urease activity in three marine phytoplankton species, Aureococcus anophagefferens, Prorocentrum minimum, and Thalassiosira weissflogii. Mar. Biol., 142: 949-958. 

  14. Gallagher, J.C., 1982. Physiological variation and electrophoretic banding patterns of genetically different seasonal populations of Skeletonema costatum (Bacillariophyceae). J. phycol., 18: 148-162. 

  15. Garate-Lizarraga, I., J.J. Bustilos-Guzmain, I. Morquecho and L. Deveze, 2000. First outbreak of Cochlodinium polykrikoides in the Gulf of California. Harmful Algae News, 7 pp. 

  16. Gauge, G. E. 1932. Experimental studies on the struggle for existence. 1. Mixed populations of two species of yeast. J. Exp. Biol., 9: 389-402. 

  17. Gobler, C.J., A. Burson, F. Koch, Y. Tang and M.R. Mulholland, 2012. The role of nitrogenous nutrients in the occurrence of harmful algal blooms caused by Cochlodinium polykrikoides in New York estuaries (USA). Harmful Algae, 17: 64-74. 

  18. Guillard, R.R.L. and D. Ryther, 1962. Studies of marine planktonic diatom I: Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol., 8: 229-239. 

  19. Harrison, P.J., J.S. Parslow and H.L. Conway, 1989. Determination of nutrient uptake kinetic parameters: a comparison of methods. Mar. Ecol. Prog. Ser., 52: 301-312. 

  20. Hasle, G.R., 1973. Morphology and taxonomy of Skeletonema costatum (Bacillariophyceae). Nor. J. Bot., 20: 109-137. 

  21. Hutchinson, G.E., 1961. The paradox of the plankton. Am. Nat., 95: 137-147. 

  22. Jauzein, C., S. Loureiro, E. Garces and Y. Collos. 2008. Interactions between ammonium and urea uptake by fice strains of Alexandrium catenella (Dinophyceae) in culture. Aquat. Microb. Ecol., 53: 271-280. 

  23. Jung, S.W, S.M Yun, S.D. Lee, Y.O. Kim and J.H Lee, 2009. Morphological characteristics of four species in the genus Skeletonema in coastal waters of South Korea. Algae, 24: 195-203. 

  24. Keller, M.D., R.C. Selvin, W. Claus and R.R.L. Guillard, 1987. Media for the culture of oceanic ultraphytoplankton. J. Phycol., 23: 633-638. 

  25. Kim, D.I., 2003. Physiological and ecological studies on harmful red tide dinoflagellate Cochlodinium polykrikoides (Margalef). Ph. D. Thesis, Kyushu University, Fukuoka, 154 pp. 

  26. Kobori, H. and N. Taga, 1979. Phosphatase activity and its role in the mineralization of organic phosphorus in coastal sea water. J. Exp. Mar. Biol. Ecol., 36: 23-39. 

  27. Koizumi, Y., T. Uchida and T. Honjo, 1996. Diurnal vertical migration of Gymnodinium mikimotoi during a red tide in Hoketsu Bay, Japan. J. Plankton Res., 18: 289-294. 

  28. Koroleff, F., 1983. Determination of urea. In: Methods of seawater analysis, 2nd. edited by Grasshoff, K., M. Ehrhardt and K. Kremling, Verlag Chemie, Weinheim, pp 158-162. 

  29. Kwon, H.K., 2010. Utilization of dissolved organic phosphorus and alkaline phosphatase activity of phytoplankton. M. Sc. Thesis, Pukyung National University, Busan, 86 pp. 

  30. Lartigue, J., E.L.E. Jester, R.W. Dickey and T.A. Villareal, 2009. Nitrogen source effects on the growth and toxicity of two strains of the ciguatera-causing dinoflagellate Gambierdiscus toxicus. Harmful Algae, 8: 781-791. 

  31. Lim, W.A, C.S. Jung, C.K. Lee, Y.C. Cho, S.G. Lee, H.G. Kim and I.K. Chung, 2002. The outbreak, maintenance, and decline of the red tide dominated by Cochlodinium polykrikoides in the coastal waters off Southern Korea from August to October, 2000. J. Korean Soc. Oceanogr., 7: 68-77. 

  32. Lee, J.H, H.S. Song and E.H. Lee, 1997. Red-tide on phytoplankton diatoms in Incheon Dock of Korea. Kor. J. Environ. Biol., 15: 119-129. 

  33. Lomas, M.W. and P.M. Glibert, 2000. Comparisons of nitrate uptake, storage, and reduction in marine diatoms and flagellates. J. Phycol., 36: 903-913. 

  34. MacIsaac, J.J, G.S. Grunseich, H.E. Glover, C.M. and Yentsch, 1979. Light and nutrient limitation in Gonyaulax excavata: nitrogen and carbon trace results. In: Toxic Dinoflagellate Blooms, edited by Taylor, D.L. and H.H. Seliger, Elsevier, NewYork, pp. 107-110. 

  35. McCarthy, J.J. 1972. The uptake of urea by marine phytoplankton. J. Phycol., 8: 216-222. 

  36. McCarthy, J.J., 1980. Nitrogen. In: The Physiological Ecology of Phytoplankton, edited by Morris, I., Blackwell Scientific Publications, Oxford, pp. 191-233. 

  37. Milligan, A.S. and P.J. Harrison, 2000. Effects of non-steady state iron limitation on nitrogen assimilatory enzymes in the marine diatom Thalassiosira weissflogii (Bacillariophycea). J. Plankton Res., 36: 78-86. 

  38. Mitamura, O. and Y. Saijo, 1980. In situ measurement of the urea decomposition rate and its turnover rate in the Pacific Ocean. Mar. Biol., 58: 147-152. 

  39. Mobley, H.L.T. and R.P. Hausinger, 1989. Microbial ureases: significance, regulation, and molecular characterization. Microbiol. Rev., 53: 85-108. 

  40. Nakamura, Y. and M.M. Watanabe, 1983. Nitrate and phosphate uptake kinetics of Chattonella antiqua grown in light/dark cycles. J. Oceanogr. Soc. Jpn., 39: 167-170. 

  41. Narasoe, S., T. Shikata, Y. Yamasaki, T. Matsubara, Y. Shimasaki, Y. Ohima and T. Honjo, 2010. Effects on growth of the red-tide dinoflagellate Gymnodinium instriatum Freudenthal et Lee and a possible link to blooms of this species. Hydorbiol., 56: 225-238. 

  42. Nishijima, T., Y. Hata and S. Yamauchi, 1989. Physiological ecology of Prorocentrum triestinum. Bull. Jpn. Soc. Sci. Fish., 55: 2009-2014. 

  43. Nishikawa, T. and Y. Hori, 2004. Effects of nitrogen, phosphorus and silicon on a growth of a diatom Eucampia zodiacus caused bleaching of seaweed Porphyra isolated from Harima-Nada, Seto Inland Sea, Japan. Nippon Suisan Gakkaishi, 70: 31-38. 

  44. Noh, I.H., 2009. Physiological and ecological studies on the harmful algae Chattonella spp. (Rhaphidophyceae) in the coastal waters of Korea. Ph. D. Thesis, Chonnam National University, Yeosu, 269 pp. 

  45. Oh, S.J., T. Yamamoto, Y. Kataoka, O. Matsuda, Y. Matsuyama and Y. Kotani, 2002. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae). Fish. Sci., 68: 416-424. 

  46. Oh, S.J., Y. Matsuyama, T. Yamamoto, M. Nakajima, H. Takatsuzi, and K. Hujisawa, 2005. Recent developments and causes of harmful dinoflagellates blooms in the Seto Lnland Sea-Ecological importance of dissolved organic phosphorus (DOP). Bull. Coast Oceanogr., 43: 85-95. 

  47. Oh S.J, H.S. Yang and T. Yamamoto, 2007. Use of a mathematical model to assess the effects of dissolved organic phosphorus on species competition among the dinoflagellates Alexandrium tamarense and Gymnodinium catenatum and the diatom Skeletonema costatum. J. Kor. Fish. Soc., 40: 39-49. 

  48. Park, J.A., 2013. DON utilization of toxic dinoflagellate Alexandrium tamarense and Alexandrium catenella isolated form Masan Bay. M. Sc. Thesis, Pukyung National University, Busan, 92 pp. 

  49. Park, J.S., Y.H. Yoon and S.J. Oh, 2009. Variational Characteristics of Phytoplankton Community in the Mouth Parts of Gamak Bay, Southern Korea. Kor. J. Environ. Biol., 27: 205-215. 

  50. Park, T.G., W.A. Lim, Y.T. Park, C.K. Lee and H.J. Jeong, 2013a. Economic impact, management and mitigation of red tides in Korea. Harmful Algae, 30S: S131-S143. 

  51. Park, K.W., J.W. Park, S.H. Yoon and Y.S. Seo, 2013b. Occurrence of Cochlodinium polykrikoides bloom, 2013. 2013 Autumn Meeting on the Korea Society of Oceanography, p. 95. 

  52. Porter, K.G. and Y.S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25: 943-948. 

  53. Poulet, S.A. and V. Martin-Jezequel, 1983. Relationships between dissolved free amino acids, chemical composition and growth of the marine diatom Chaetoceros debile. Mar. Biol., 77: 93-100. 

  54. Provasoil, L., K. Shiraishi and J.R. Lance, 1959. Nutritional idiosyncrasies of Artemia and Tigriopus in monoxenic culture. Ann. N. Y. Sci., 77: 250-261. 

  55. Richersons, P, R. Armstrong and C.R. Goldman, 1970. Contemporaneous disequilibrium, a new hypothesis to explain the 'paradox of the plankton'. Pro. Nat. Acad. Sci., 67: 1710-1714. 

  56. Sommer, U., 1989. The role of competition for resources in phytoplankton succession. In: Plankton Ecology: Succession in Plankton Communities, edited by Sommer, U., Springer-Verlag, New York, pp. 57-106. 

  57. Steidinger, K.A., G.A. Vargo, P.A. Tester and C.R. Tomas, 1998. Bloom dynamics and physiology of Gymnodinium breve with emphasis on Gulf of Mexico. In: Physiological Ecology of Harmful Algal Blooms, edited by Anderson, D.M., A.D. Cembella and G.M. Hallegraeff, Springer, NewYork, pp. 135-153. 

  58. Strickland, J.D.H. and L. Solorzano, 1966. Determination of monoesterase hydrolysable phosphate and phosphomonoesterase activity in sea water. In: Some contemporary studies in marine science, edited by Barnes, H., Allen and Unwin Ltd, London, pp. 665-674. 

  59. Strickland, J.D.H. and T.R. Parson, 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa, 310 pp. 

  60. Tameishi, M., Y. Yamasaki, S. Nagasoe, Y. Shimasaki, Y. Oshima and T. Honjo, 2009. Allelopathic effects of the Dinophyte Prorocentrum minimum on the growth of the Bacillariophyte Skeletonema costatum. Harmful Algae, 8: 421-429. 

  61. Tang, Y.Z. and C.J. Gobler, 2010. Allelopathic effects of Cochlodinium polykrikoides isolates and blooms from the estuaries of Long Island, New York, on co-occurring phytoplankton, Mar. Ecol. Prog. Ser., 406: 19-13. 

  62. Whyte, J.N.C., N. Haigh, N.G. Ginther and L.J. Keddy, 2001. First record of blooms of Cochlodinium sp.(Gymnodiniales, Dinophyceae) causing mortality to aquacultured salmon on the west coast of Canada. Phycol., 40: 298-304. 

  63. Wiliams, P.J.B., 1975. Biological and chemical aspects of dissolved organic material in sea water, In: Chemical Oceanography, edited by Riley, J.P. and G. Skirrow, Academic Press Inc., London, pp. 301-363. 

  64. Yamamoto, Y., S.J. Oh and Y. Kataoka, 2004. Growth and uptake kinetics for nitrate, ammonium and phosphate by the toxic dinoflagellate Gymnodinium catenatum isolated from Hiroshima Bay, Japan. Fish. Sci., 70: 108-115. 

  65. Yamaguchi, H., T. Nishijima, H. Nishitani, K. Fukami and M. Adachi., 2004a. Organic phosphorus utilization and alkaline phosphatase production of 3 red tide phytoplankton. Nippon Suisan Gakkaishi, 70: 123-130. 

  66. Yamaguchi, H., T. Nishijima, A. Oda, K. Fukami and M. Adachi, 2004b. Distribution and variation of alkaline phosphatase activity and phosphatase hydrolyzable phosphorus in coastal seawater. Nippon Suisan Gakkaishi, 70: 333-342. 

  67. Yamaguchi, H., H. Sakou, K. Fukami, M. Adachi, M. Yamaguchi and N. Nishijima, 2005. Utilization of organic phosphorus and production of alkaline phosphatase by the phytoplankton, Hepterocapsa circularisquama, Fibrocapsa japonica and Chaetoceros ceratosporum. Plankton Biol. Ecol., 52: 65-75. 

  68. Yamaguchi, H., S. Sakamoto and M. Yamaguchi, 2008. Nutrition and growth kinetics in nitrogen- and phosphorus-limited cultures of the novel red tide flagellate Chattonella ovata (Raphidophyceae). Harmful Algae, 7: 26-32. 

  69. Yuki, K. and S. Yoshimatsu, 1989. Two fish-killing species of Cochlodinium form Harima-Nada, Seto Inland Sea, Japan. In: Red Tides: Biology, Environmental Science, and Toxicology, edited by Okaichi, T., D.M. Anderson and T. Nemoto, Elsevier, NewYork, pp. 451-452. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로