$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

In this article, the megasonic cleaning system for cleaning micro/nano particles from flat panel display (FPD) surfaces was developed. A piezoelectric actuator and a waveguide were designed by finite element method (FEM) analysis. The calculated peak frequency value of the quartz waveguide was 1002 ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this work, the megasonic cleaning system for cleaning micro/nano particles from FPD surfaces was developed, aiming for power consumption reduction and chemical and UPW savings. FEM analysis using Ansys was performed to design the PZT actuator and waveguide. The highest impedance value of the PZT actuator was 1004 kHz, which agreed well with experimentally measured value of 1005 kHz.
  • The cleaning system was designed by FEM analysis using the commercial FEM software. First, the PZT actuator was modeled with the analysis tool. The model was axis-symmetric and the nodes of the top and bottom electrodes were coupled to apply voltages.
  • In this work, the megasonic cleaning system for cleaning micro/nano particles from FPD surfaces was developed, aiming for power consumption reduction and chemical and UPW savings. FEM analysis using Ansys was performed to design the PZT actuator and waveguide.
  • Another index that can explain the megasonic cleaning system performance is the particle removal efficiency (PRE) test. This experiment is being processed by deposition of micro-sized particles and cleaning them with the proposed cleaning system. When the particle deposition is completed, the number of particles is being counted using a particle counting machine.
본문요약 정보가 도움이 되었나요?

참고문헌 (22)

  1. Lee, J., Liu, D. N., and Wu, S.-T., "Introduction to Flat Panel Displays," Wiley, 2008. 

  2. Geng, H., "Semiconductor Manufacturing Handbook," McGraw-Hill, 2005. 

  3. Park, I. S., Choi, S. J., Hong, C. K., Cho, H.-K., Lu, Y. Q., et al., "Meeting the Critical Challenges for 65 nm and Beyond using a Single Wafer Processing with Novel Megasonics and Drying Technologies," ECS Trans., Vol. 1, No. 3, pp. 172-179, 2005. 

  4. Kanegsberg, B., "Critical Cleaning," CRC Press, 2001. 

  5. Lee, Y., Lim, E., Kang, K., Kim, H., Kim, T.-G., et al., "Acoustic Field Analysis of a T Type Waveguide in Single Wafer Megasonic Cleaning and its Effect on Particle Removal," Proc. of the 8th Int. Symp. Ultra Clean Processing Semiconductor Surfaces, pp. 65-66, 2006. 

  6. Moumen, N., Guarrera, M., Piboontum, C., and Busnaina, A. A., "Contact and Non Contact post- CMP Cleaning of Thermal Oxide Silicon Wafers," Proc. of IEEE/SEMI Advanced Semiconductor Manuf. Conf., pp. 250-253, 1999. 

  7. Deymier, P. A., Khelif, A., Djafari-Rouhani, B., Vasseur, J. O., and Raghavan, S., "Theoretical Calculation of the Acoustic Force on a Patterned Silicon Wafer during Megasonic Cleaning," J. Appl. Phys., Vol. 88, No. 5, pp. 2423-2429, 2000. 

  8. Busnaina, A. A. and Lin, H., "Physical Removal of Nano-Scale Defects from Surfaces," Proc. of IEEE/SEMI Advanced Semiconductor Manuf. Conf., pp. 272-277, 2002. 

  9. Lin, H., Busnaina, A. A., and Suni, I. I., "Cleaning of high aspect ratio submicron trenches," Proc. of IEEE/SEMI Advanced Semiconductor Manuf. Conf., pp. 304-308, 2002. 

  10. Yin, X. and Komvopoulos, K., "Dynamic Finite Element Analysis of Failure in Alternating Phase- Shift Masks Caused by Megasonic Cleaning," IEEE Trans. Components Packaging Tech., Vol. 33, No. 1, pp. 46-55, 2005. 

  11. Lauerhaas, J., Mertens, P. W., Fyen, W., Kenis, K., Meuris, M., et al., "Single Wafer Cleaning and Drying: Particle Removal via a Non-Contact, Non-Damaging Megasonic Clean Followed by a High Performance "Rotagoni" dry," Proc. of 9th Int'l Symposium on Semicon. Manuf., pp. 157-160, 2000. 

  12. Liu, L., Walter, A., and Novak, R., "Single-wafer Tool Performs Re-Contamination Free in Wet Wafer Cleaning," ECS Trans., Vol. 1, No. 3, pp. 150-157, 2005. 

  13. Lippert, A., Engesser, P., Gleissner, A., Koffler, M., Kumnig, F., et al., "Keys to Advanced Single Wafer Cleaning - Gas Contend, Bubble Size Distribution and Chemistry," ECS Trans., Vol. 1, No. 3, pp. 158-163, 2005. 

  14. Kim, H., Lee, Y., and Lim, E., "Design and Fabrication of an L-type Waveguide Megasonic System for Cleaning of Nano-Scale Patterns," Current Applied Physics, Vol. 9, pp. e189-e192, 2009. 

  15. Kim, H., Lee, Y., and Lim, E., "A Quartz-bar Megasonic System for Nano-Pattern Cleaning," Int. J. Precis. Eng. Manuf., Vol. 14, No. 10, pp. 1713-1718, 2013. 

  16. Mitsumori, K., Nobuaki, H., Takahashi, N., Imaoka, T., and Ohmi, T., "Advanced Wet Cleaning using Novel Nozzle and Functional Ultrapure Water in Next Generation FPD/LSI Manufacturing," Proc. of 9th Int. Symposium on Semicon. Manuf., pp. 329-332, 2000. 

  17. McQueen, D. H., "Frequency Dependence of Ultrasonic Cleaning," Ultrasonics, Vol. 24, No. 5, pp. 273-280, 1986. 

  18. Quan, Q. and Brereton, G. J., "Mechanisms of Removal of Micron-Sized Particles by High- Frequency Ultrasonic Waves," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 42, No. 4, pp. 619-629, 1995. 

  19. Hauptmann, M., Brems, S., Camerotto, E., Zijlstra, A., Doumen, G., et al., "Influence of Gasification on the Performance of a 1 MHz Nozzle System in Megasonic Cleaning," Microelectronic Engineering Vol. 87, No. 5-8, pp. 1512-1515, 2010. 

  20. Habuka, H., Fukumoto, R., Okada, Y., and Kato, M., "Dominant Forces for Driving Bubbles in a Wet Cleaning Bath using Megasonic Wave," J. Electrochemical Society, Vol. 157, No. 6, pp. H585- H588, 2010. 

  21. Hauptmann, M., Struyf, H., Mertens, P., Heyns, M., De Gendt, S., et al., "Towards an Understanding and Control of Cavitation Activity in 1 MHz Ultrasound Fields," Ultrasonics Sonochemistry, Vol. 20, No. 1, pp. 77-88, 2013. 

  22. Keswani, M., Raghavan, S., and Deymier, P., "Characterization of Transient Cavitation in Gas Sparged Solutions Exposed to Megasonic Field using Cyclic Voltammetry," Microelectronic Engineering Vol. 102, pp. 91-97, 2013. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로