$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

이산화탄소 분리용 혼합 매질 분리막 최신 연구 동향
Recent Research Trends of Mixed Matrix Membranes for CO2 Separation 원문보기

멤브레인 = Membrane Journal, v.25 no.5, 2015년, pp.373 - 384  

지원석 (연세대학교 화공생명공학과) ,  이재훈 (연세대학교 화공생명공학과) ,  박민수 (연세대학교 화공생명공학과) ,  김종학 (연세대학교 화공생명공학과)

초록
AI-Helper 아이콘AI-Helper

지난 수십 년 동안, 고분자막은 기체 분리 분야에서 큰 역할을 해왔다. 온실가스의 주범인 이산화탄소를 분리하기 위해서는 더 높은 투과선택도와 장수명 및 대면적 등을 요구한다. 하지만 기존 고분자 분리막들은 투과도와 선택도의 역상관 관계 특징을 지니고 있으며, 무기물질은 투과성능이 우수하지만 가격이 비싸다는 단점이 있다. 최근 많은 연구가 진행되어온 혼합 매질 분리막은 고분자와 무기물질의 이점들을 혼합하여 기체 분리막의 차세대로서 큰 이목을 이끌고 있다. 혼합 매질 분리막은 대칭적인 구조 또는 비대칭적인 구조를 가지고 있으며, 투과량을 증가시키기 위해서는 비대칭적인 구조가 바람직하다. 혼합 매질 분리막에서 가장 중요한 변수로는 무기입자의 균일한 분산과 무기물과 고분자 사이의 좋은 계면을 형성하는 것이다. 최근에 새로운 분류의 다공성 결정성 물질인 금속 유기 구조체(MOF)는 이산화탄소 분리용 소재로써 많은 관심을 끌고 있다. MOF의 한 종류 중, zeolitic imidazolate frameworks (ZIF)는 가장 흔하게 사용되는 무기입자이며 이는 입자의 크기를 작게 만들 수 있으며, $CO_2$를 분리하기에 적절한 기공의 크기를 가지고 있기 때문이다. 이 밖에 혼합 매질 분리막에 사용되는 특정 물질들을 적용하기 위해서는 선택도와 크기, 호환성, 안정성 등을 동시에 최적화시켜야 한다. 이와 같이 본 총설에서는, 혼합 매질 분리막에 관련된 주요 연구내용과 이러한 연구를 수행하는 대표적인 전략들을 소개하였다.

Abstract AI-Helper 아이콘AI-Helper

In the past few decades, polymeric membrane has played an important role in gas separation applications. For the separation of $CO_2$, one of greenhouse gases, high permselectivity, long-term stability and scale-up are needed. However, conventional polymeric membranes have shown a trade-o...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 혼합 매질 분리막 제작의 주요한 목적은 무기 입자들의 뛰어난 기체 투과 특징을 이용하는 것이다. 따라서, 이상적인 혼합 매질 분리막은 기체가 고분자 상보다 무기 상을 통해서 투과할 수 있도록 만들어진 구조를 가져야 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
혼합 매질 분리막에서 가장 중요한 변수는? 혼합 매질 분리막은 대칭적인 구조 또는 비대칭적인 구조를 가지고 있으며, 투과량을 증가시키기 위해서는 비대칭적인 구조가 바람직하다. 혼합 매질 분리막에서 가장 중요한 변수로는 무기입자의 균일한 분산과 무기물과 고분자 사이의 좋은 계면을 형성하는 것이다. 최근에 새로운 분류의 다공성 결정성 물질인 금속 유기 구조체(MOF)는 이산화탄소 분리용 소재로써 많은 관심을 끌고 있다.
혼합 매질 분리막 제작의 주요한 목적은 무엇인가? 혼합 매질 분리막 제작의 주요한 목적은 무기 입자들의 뛰어난 기체 투과 특징을 이용하는 것이다. 따라서, 이상적인 혼합 매질 분리막은 기체가 고분자 상보다 무기 상을 통해서 투과할 수 있도록 만들어진 구조를 가져야 한다.
혼합 매질 분리막 제작에서 막의 구조를 제어하는 전략이 중요한 이유는? 혼합 매질 분리막 제작의 주요한 목적은 무기 입자들의 뛰어난 기체 투과 특징을 이용하는 것이다. 따라서, 이상적인 혼합 매질 분리막은 기체가 고분자 상보다 무기 상을 통해서 투과할 수 있도록 만들어진 구조를 가져야 한다. 그러므로 막의 구조를 제어하는 전략은 고려되어야 할 가장 중요한 문제 중에 하나이다.
질의응답 정보가 도움이 되었나요?

참고문헌 (94)

  1. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). 

  2. J. H. Kim, C. Y. Park, and Y. Lee, "Synthesis of soluble copolyimides using an alicyclic dianhydride and their $CO_2/CH_4$ separation properties", Membr. J., 24, 1 (2014). 

  3. K. S. Gi and K. T. Beom, "Separation of gases ( $H_2$ , $N_2$ , $CO_2$ , $CH_4$ ) by PEBAX-NaY zeolite composite membranes", Membr. J., 25, 27 (2015). 

  4. P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: A review/state of the art", Ind. Eng. Chem. Res., 48, 4638 (2009). 

  5. H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, and I. Wright, "Progess in carbon dioxide separation and capture: A review", J. Environ. Sci., 20, 14 (2008). 

  6. J. M. Lee, M. G. Lee, S. J. Kim, H. C. Koh, and S. Y. Nam, "Characterization of gas permeation properties of polyimide copolymer membranes", Membr. J., 25, 223 (2015). 

  7. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). 

  8. A. Singh-Ghosal and W. J. Koros, "Air separation properties of flat sheet homogeneous pyrolytic carbon membranes", J. Membr. Sci., 174, 177 (2000). 

  9. A. B. Fuertes and T. A. Centeno, "Preparation of supported asymmetric carbon molecular sieve membranes", J. Membr. Sci., 144, 105 (1998). 

  10. A. B. Fuertes and T. A. Centeno, "Preparation of supported carbon molecular sieve membranes", Carbon, 37, 679 (1999). 

  11. Y. K. Kim, J. M. Lee, H. B. Park, and Y. M. Lee, "The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups", J. Membr. Sci., 235, 139 (2004). 

  12. H. B. Park, Y. K. Kim, J. M. Lee, S. Y. Lee, and Y. M. Lee, "Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes", J. Membr. Sci., 229, 117 (2004). 

  13. P. S. Tin, T.-S. Chung, S. Kawi, and M. D. Guiver, "Novel approaches to fabricate carbon molecular sieve membranes based on chemical modified and solvent treated polyimides", Micropor. Mesopor. Mater., 73, 151 (2004). 

  14. R. M. de Vos and H. Verweij, "High-selectivity, high-flux silica membranes for gas separation", Science, 279, 1710 (1998). 

  15. J. Caro, M. Noack, P. Kolsch, and R. Schafer, "Zeolite membranes-state of their development and perspective", Micropor. Mesopor. Mater., 38, 3 (2000). 

  16. D. Q. Vu, W. J. Koros, and S. J. Miller, "Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results", J. Membr. Sci., 211, 311 (2003). 

  17. D. Q. Vu, W. J. Koros, and S. J. Miller, "Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior", J. Membr. Sci., 211, 335 (2003). 

  18. H. Vinh-Thang and S. Kaliaguine, "Predictive models for mixed-matrix membrane performance: A review", Chem. Rev., 113, 4980 (2013). 

  19. P. S. Goh, A. F. Ismail, S. M. Sanip, B. C. Ng, and M. Aziz, "Recent advances of inorganic fillers in mixed matrix membrane for gas separation", Sep. Purif. Technol., 81, 243 (2011). 

  20. M. J. C. Ordonez, K. J. Balkus Jr, J. P. Ferraris, and I. H. Musselman, "Molecular sieving realized with ZIF-8/ $Matrimid^{(R)}$ mixed-matrix membranes", J. Membr. Sci., 361, 28 (2010). 

  21. M. L. Lind, A. K. Ghosh, A. Jawor, X. Huang, W. Hou, Y. Yang, and E. M. V. Hoek, "Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes", Langmuir, 25, 10139 (2009). 

  22. I. Pinnau and W. J. Koros, "Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion", J. Appl. Polym. Sci., 43, 1491 (1991). 

  23. R. Mahajan, R. Burns, M. Schaeffer, and W. J. Koros, "Challenges in forming successful mixed matrix membranes with rigid polymeric materials", J. Appl. Polym. Sci., 86, 881 (2002). 

  24. B.-H. Jeong, E. M. V. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A. K. Ghosh, and A. Jawor, "Challenges in forming successful mixed matrix membranes with rigid polymeric materials", J. Membr. Sci., 294, 1 (2007). 

  25. M. A. Aroon, A. F. Ismail, T. Matsuura, and M. M. Montazer-Rahmati, "Performance studies of mixed matrix membranes for gas separation: A review", Sep. Purif. Technol., 75, 229 (2010). 

  26. T.-S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007). 

  27. R. Mahajan and W. J. Koros, "Factors controlling successful formation of mixed-matrix gas separation materials", Ind. Eng. Chem. Res., 39, 2692 (2000). 

  28. L. Y. Jiang, T. S. Chung, C. Cao, Z. Huang, and S. Kulprathipanja, "Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes", J. Membr. Sci., 252, 89 (2005). 

  29. T. D. Kusworo, A. F. Ismail, A. Mustafa, and T. Matsuura, "Dependence of membrane morphology and performance on preparation conditions: The shear rate effect in membrane casting", Sep. Purif. Technol., 61, 249 (2008). 

  30. M. Das, J. D. Perry, and W. J. Koros, "Gas- transport- property performance of hybrid carbon molecular sieve-polymer materials", Ind. Eng. Chem. Res., 49, 9310 (2010). 

  31. M.-D. Jia, K.-V. Pleinemann, and R.-D. Behling, "Preparation and characterization of thin-film zeolite- PDMS composite membranes", J. Membr. Sci., 73, 119 (1992). 

  32. T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, "Ultrapermeable, reverse-selective nanocomposite membranes", Science, 296, 519 (2002). 

  33. C. Kong, T. Shintani, and T. Tsuru, "Pre-seeding assisted synthesis of a high performance polyamide- zeolite nanocomposite membrane for water purification", New J. Chem., 34, 2101 (2010). 

  34. A. Car, C. Stropnik, and K.-V. Peinemann, "Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation", Desalination, 200, 424 (2006). 

  35. S. Husain and W. J. Koros, "Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation", J. Membr. Sci., 288, 195 (2007). 

  36. J. M. Duval, B. Folkers, M. H. V. Mulder, G. Desgrandchamps, and C. A. Smolders, "Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents", J. Membr. Sci., 80, 189 (1993). 

  37. B. D. Reid, F. A. Ruiz-Trevino, I. H. Musselman, K. J. Balkus, and J. P. Ferraris, "Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41", Chem. Mater., 13, 2366 (2001). 

  38. B. Zornoza, C. Tellez, and J. Coronas, "Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation", J. Membr. Sci., 368, 100 (2011). 

  39. Y. Zhang, I. H. Musselman, J. P. Ferraris, and K. J. Balkus, "Gas permeability properties of mixedmatrix matrimid membranes containing a carbon aerogel: A material with both micropores and mesopores", Ind. Eng. Chem. Res., 47, 2794 (2008). 

  40. Y. Li, H.-M. Guan, T.-S. Chung, and S. Kulprathipanja, "Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)-zeolite A mixed matrix membranes", J. Membr. Sci., 275, 17 (2006). 

  41. M. Frycova, P. Sysel, M. Kocirik, L. Brabec, P. Hrabanek, O. Prokopova, B. Bernauer, and A. Zikanova, "Mixed matrix membranes based on 3-aminopropyltriethoxysilane endcapped polyimides and silicalite-1", J. Appl. Polym. Sci., 124, E233 (2012). 

  42. Y. Hudiono, S. Choi, S. Shu, W. J. Koros, M. Tsapatsis, and S. Nair, "Porous layered oxide/ $Nafion^{(R)}$ nanocomposite membranes for direct methanol fuel cell applications", Microporous Mesoporous Mater., 118, 427 (2009). 

  43. Y. C. Hudiono, T. K. Carlisle, J. E. Bara, Y. Zhang, D. L. Gin, and R. D. Noble, "A three-component mixed-matrix membrane with enhanced $CO_2$ separation properties based on zeolites and ionic liquid materials", J. Membr. Sci., 350, 117 (2010). 

  44. S. Basu, A. Cano-Odena, and I. F. J. Vankelecom, "Asymmetric $Matrimid^{(R)}$ /[ $Cu_3(BTC)_2$ ] mixed-matrix membranes for gas separations", J. Membr. Sci., 362, 478 (2010). 

  45. Y. Zhang, I. H. Musselman, J. P. Ferraris, and K. J. Balkus Jr, "Asymmetric $Matrimid^{(R)}$ /[ $Cu_3(BTC)_2$ ] mixed-matrix membranes for gas separations", J. Membr. Sci., 313, 170 (2008). 

  46. Y. Zhang, K. J. Balkus Jr, I. H. Musselman, and J. P. Ferraris, "Asymmetric $Matrimid^{(R)}$ /[ $Cu_3(BTC)_2$ ] mixed-matrix membranes for gas separations", J. Membr. Sci., 325, 28 (2008). 

  47. Y. Li, T.-S. Chung, C. Cao, and S. Kulprathipanja, "Asymmetric $Matrimid^{(R)}$ /[ $Cu_3(BTC)_2$ ] mixed-matrix membranes for gas separations", J. Membr. Sci., 260, 45 (2005). 

  48. E. V. Perez, K. J. Balkus Jr, J. P. Ferraris, and I. H. Musselman, "Mixed-matrix membranes containing MOF-5 for gas separations", J. Membr. Sci., 165, 328 (2009). 

  49. S. Ma, D. Sun, X.-S. Wang, and H.-C. Zhou, "A mesh-adjustable molecular sieve for general use in gas separation", Angew. Chem. Int. Ed., 46, 2458 (2007). 

  50. L. Pan, K. M. Adams, H. E. Hernandez, X. Wang, C. Zheng, Y. Hattori, and K. Kaneko, "Porous lanthanide- organic frameworks: synthesis, characterization, and unprecedented gas adsorption properties", J. Am. Chem. Soc., 125, 3062 (2003). 

  51. D. N. Dybtsev, H. Chun, S. H. Yoon, D. Kim, and K. Kim, "Microporous manganese formate: A simple metal-organic porous material with high framework stability and highly selective gas sorption properties", J. Am. Chem. Soc., 126, 32 (2003). 

  52. R. Adams, C. Carson, J. Ward, R. Tannenbaum, and W. Koros, "Metal organic framework mixed matrix membranes for gas separations", Micropor. Mesopor. Mater., 131, 13 (2010). 

  53. T. Yang, Y. Xiao, and T.-S. Chung, "Poly-/ metal- benzimidazole nano-composite membranes for hydrogen purification", Energy Environ. Sci., 4, 4171 (2011). 

  54. M. Z. Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R. Walter, and K. Friedrich, "Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites", Polymer, 42, 167 (2001). 

  55. M. Q. Zhang, M. Z. Rong, H. B. Zhang, and K. Friedrich, "Mechanical properties of low nano-silica filled high density polyethylene composites", Polym. Eng. Sci., 32, 490 (2003). 

  56. Q. Song, S. K. Nataraj, M. V. Roussenova, J. C. Tan, D. J. Hughes, W. Li, P. Bourgoin, M. A. Alam, A. K. Cheetham, S. A. Al-Muhtaseb, and E. Sivaniah, "Zeolite imidazolate frameswork (ZIF-8) based polymer nanocomposite membranes for gas separation", Energy Environ. Sci., 5, 8359 (2012). 

  57. O. G. Nik, X. Y. Chen, and S. Kaliaguine, "Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 379, 468 (2011). 

  58. O. G. Nik, X. Y. Chen, and S. Kaliaguine, "Functionalized metal organic framework-polyimide mixed matrix membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 413, 45 (2012). 

  59. A. Carne, C. Carbonell, I. Imaz, and D. Maspoch, "Nanoscale metal-organic materials", Chem. Soc. Rev., 40, 291 (2011). 

  60. M. Oh and C. A. Mirkin, "Chemically tailorable colloidal particles from infinite coordination polymers", Nature, 438, 651 (2005). 

  61. J. Cravillon, S. Munzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, and M. Wiebcke, "Rapid toom-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework", Chem. Mater., 21, 1410 (2009). 

  62. S. K. Nune, P. K. Thallapally, A. Dohnalkova, C. Wang, J. Liu, and G. J. Exarhos, "Synthesis and properties of nano zeolitic imidazolate frameworks", Chem. Commun., 46, 4878 (2010). 

  63. W. S. Chi, S. J. Kim, S. J. Lee, Y. S. Bae, and J. H. Kim, "Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach", Chem. Sus. Chem., 8, 650 (2015). 

  64. P. D. C. Dietzel, V. Besikiotis, and R. Blom, "Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide", J. Mater. Chem., 19, 7362 (2009). 

  65. L. H. Wee, M. R. Lohe, N. Janssens, S. Kaskel, and J. A. Martens, "Fine tuning of the metal-organic framework $Cu_3(BTC)_2$ HKUST-1 crystal size in the 100 nm to 5 micron range", J. Mater. Chem., 22, 13742 (2012). 

  66. M. Anson, J. Marchese, E. Garis, N. Ochoa, and C. Pagliero, "ABS copolymer-activated carbon mixed matrix membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 243, 19 (2004). 

  67. R. Mahajan and W. J. Koros, "Mixed matrix membrane materials with glassy polymers. Part 1", Polym. Eng. Sci., 42, 1420 (2002). 

  68. S. Li, J. L. Falconer, and R. D. Noble, "SAPO-34 membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 241, 121 (2004). 

  69. Z. Zhao, Z. Li, and Y. S. Lin, "Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5)", Ind. Eng. Chem. Res., 48, 10015 (2009). 

  70. Z. Huang, Y. Li, R. Wen, M. May Teoh, and S. Kulprathipanja, "Enhanced gas separation properties by using nanostructured PES-Zeolite 4A mixed matrix membranes", J. Appl. Polym. Sci., 101, 3800 (2006). 

  71. Y. Li, T.-S. Chung, and S. Kulprathipanja, "Novel $Ag^+$ -zeolite/polymer mixed matrix membranes with a high $CO_2/CH_4$ selectivity", AIChE J., 53, 610 (2007). 

  72. M. B. Rao and S. Sircar, "Nanoporous carbon membranes for separation of gas mixtures by selective surface flow", J. Membr. Sci., 85, 253 (1993). 

  73. M. B. Rao and S. Sircar, "Performance and pore characterization of nanoporous carbon membranes for gas separation", J. Membr. Sci., 110, 109 (1996). 

  74. J. H. Kim and Y. M. Lee, "Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes", J. Membr. Sci., 193, 209 (2001). 

  75. H. Cong, M. Radosz, B. F. Towler, and Y. Shen, "Polymer-inorganic nanocomposite membranes for gas separation", Sep. Purif. Technol., 55, 281 (2007). 

  76. Z. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis, and D. G. Vlachos, "Microstructural optimization of a zeolite membrane for organic vapor separation", Science, 300, 456 (2003). 

  77. A. F. Ismail and W. Lorna, "Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane", Sep. Purif. Technol., 27, 173 (2002). 

  78. G. Dong, H. Li, and V. Chen, "Plasticization mechanisms and effects of thermal annealing of Matrimid hollow fiber membranes for $CO_2$ removal", J. Membr. Sci., 369, 206 (2011). 

  79. A. Bos, I. G. M. Punt, and H. Strathmann, "Plasticization-resistant glassy polyimide membranes for $CO_2/CO_4$ separations", Sep. Purif. Technol., 14, 27 (1998). 

  80. M. Wessling, S. Schoeman, T. van den Boomgaard, and C. A. Smolders, "Plasticization of gas separation membranes", Gas Sep. Purif., 5, 222 (1991). 

  81. C. A. Scholes, S. Kentish, and G. Stevens, "Effects of minor components in carbon dioxide capture using polymeric gas separation membranes", Sep. Purif. Rev., 38, 1 (2009). 

  82. M. Al-Juaied and W. J. Koros, "Performance of natural gas membranes in the presence of heavy hydrocarbons", J. Membr. Sci., 274, 227 (2006). 

  83. C. C. Ahn, Y. Ye, B. V. Ratnakumar, C. Witham, J. R. C. Bowman, and B. Fultz, "Hydrogen desorption and adsorption measurements on graphite nanofibers", Appl. Phys. Lett., 73, 3378 (1998). 

  84. R. Ameloot, E. Gobechiya, H. Uji-i, J. A. Martens, J. Hofkens, L. Alaerts, B. F. Sels, and D. E. De Vos, "Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions", Adv. Mater., 22, 2685 (2010). 

  85. J. R. Johnson and W. J. Koros, "Utilization of nanoplatelets in organic-inorganic hybrid separation materials: Separation advantages and formation challenges", J. Taiwan Inst. Chem. Eng., 40, 268 (2009). 

  86. J. A. Sheffel and M. Tsapatsis, "A model for the performance of microporous mixed matrix membranes with oriented selective flakes", J. Membr. Sci., 295, 50 (2007). 

  87. J. Choi and M. Tsapatsis, "MCM-22/Silica selective flake nanocomposite membranes for hydrogen separations", J. Am. Chem. Soc., 132, 448 (2009). 

  88. S. Choi, J. Coronas, E. Jordan, W. Oh, S. Nair, F. Onorato, D. F. Shantz, and M. Tsapatsis, "Layered silicates by swelling of AMH-3 and nanocomposite membranes", Angew. Chem., Int. Ed., 47, 552 (2008). 

  89. C. Yang, W. H. Smyrl, and E. L. Cussler, "Flake alignment in composite coatings", J. Membr. Sci., 231, 1 (2004). 

  90. R. D. Noble, "Perspectives on mixed matrix membranes", J. Membr. Sci., 378, 393 (2011). 

  91. S. Xiong, S. Wang, X. Tang, and Z. Wang, "Four new metal-organic frameworks constructed from $H_2DBTDC-O_2$ ( $H_2DBTDC-O_2$ dibenzothiophene-5, 5'-dioxide-3,7-dicarboxylic acid) ligand with guest-responsive photoluminescence", Cryst. Eng. Comm., 13, 1646 (2011). 

  92. R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, T. C. Kobayashi, S. Horike, and M. Takata, "Guest shape-responsive fitting of porous coordination polymer with shrinkable framework", J. Am. Chem. Soc., 126, 14063 (2004). 

  93. N. B. Mckeown, P. M. Budd, K. J. Msayib, B. S. Ghanem, H. J. Kingston, C. E. Tattershall, S. Makhseed, K. J. Reynolds, and D. Fritsch, "Polymers of intrinsic microporosity (PIMs): Bridging the void between microporous and polymeric materials", Chem. -Eur. J., 11, 2610 (2005). 

  94. J. Ahn, W.-J. Chung, I. Pinnau, J. Song, N. Du, G. P. Robertson, and M. D. Guiver, "Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)", J. Membr. Sci., 346, 280 (2010). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로