$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

유기용매 내성 세균과 이용가능성
Solvent Tolerant Bacteria and Their Potential Use 원문보기

생명과학회지 = Journal of life science, v.25 no.12 = no.188, 2015년, pp.1458 - 1469  

주우홍 (창원대학교 생물학화학융합학부)

초록
AI-Helper 아이콘AI-Helper

유기용매 내성 세균의 첫 분리 보고 이후 다수의 유기용매 내성 세균들이 토양 폐수 심지어 심해 등 모든 환경에서 분리 보고되고 있다. 대부분의 유기용매 내성 세균은 그람음성세균으로 이는 그람음성 세균이 그람양성 세균 보다 유전적으로 더 내성을 보이기 때문이다. 유기용매 내성 기전은 유기용매 내성 그람음성 세균을 주로 사용하여 집중적으로 구명되어왔다. 유기용매 내성 그람양성 세균의 유기용매 내성 기전은 비교적 최근 연구에서 발견되고 있다. 유기용매는 용매에 따라 다른 독성을 보이며 유기용매 내성세균의 유기용매 내성 수준은 종과 균주에 의존적으로 매우 변화가 심하다. 그러므로 유기용매 내성세균은 다양한 변인과 다유전자에 의한 적응 전략에 의하여 용매독성과 싸우며 용매 스트레스에 적응할 수 있다. 그들은 세포형태 및 세포 행동에서의 변화, 세포표층의 수식, 세포막 적응, 용매 배출 펌프, 샤페론 그리고 항산화 반응 등의 기전을 통하여 유기용매의 과량의 농도에서도 생존할 수 있다. 본 총설에서는 대표적인 유기용매 내성 세균, 유기용매 내성 세균에서의 유기용매에의 적응 및 내성 전략들 나아가 그들의 산업적 및 환경공학적인 잠재적인 영향에 대하여 개관하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Many organic solvent-tolerant bacteria have been isolated from all environments such as soil, waste-water, even deep sea after first isolation report of organic solvent-tolerant bacterium. Most organic solvent- tolerant isolates have been determined to be Gram-negative bacteria, because Gram-negativ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 총설에서는 극한생물 중에서 유기용매 내성 세균에 초점을 맞추어 고찰하고자 한다.
  • 유기용매 내성 세균의 이용에 관하여는 de Bont의 리뷰, Sardessai 등의 총설 그리고 Torres 등의 총설에서 잘 정리되어 보고되고 있으므로[19, 72, 79], 본 총설에서는 이를 기초로 하여 최근 이용 현황 부분 그리고 일부 누락된 부분을 첨가하여 보고하고자 한다. 물에 불용성인 지질친화적인 물질을 이용한 생물변환반응에는 물질의 최대 용해가 수율을 결정하는 주요인이 되고 있기 때문에 two-liquid water-solvent 시스템을 사용하는 경우가 많다.
본문요약 정보가 도움이 되었나요?

참고문헌 (95)

  1. Abe, A., Inoue, A., Usami, R., Moriya, K. and Horikoshi, K. 1995. Properties of newly isolated marine bacterium that can degrade polyaromatic hydrocarbons in the presence of organic solvents. J. Marine Biotechnol. 2, 182-186. 

  2. Aizawa, T., Neilan, B. A., Couperwhite, I., Urai, M., Anzai, H., Iwabuchi, N., Nakajima, M. and Sunairi, M. 2005. Relationship between extracellular polysaccharide and benzene tolerance of Rhodococcus sp. 33. Actinomycetologica 19, 1-6. 

  3. Aono, R. and Kobayashi, H. 1997. Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12. Appl. Environ. Microbiol. 63, 3637-3642. 

  4. Baumgarten, T., Vazquez, J., Bastisch, C., Veron, W., Feuilloley, M. G., Nietzsche, S., Wick, L. Y. and Heipieper, H. J. 2012. Alkanols and chlorophenols cause different physiologicaladaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E. Appl. Microbiol. Biotechnol. 93, 837-845. 

  5. Baumgarten, T., Sperling, S., Seifert, J., von Bergen, M., Steiniger, F., Wick, L. Y. and Heipieper, H. J. 2012. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl. Environ. Microbiol.78, 6217-6224. 

  6. Bustard, M. T., Whiting, S., Cowan, D. A. and Wright, P. C. 2002. Biodegradation of high-concentration isopropanol by a solvent-tolerant thermophile, Bacillus pallidus. Extremophiles 6, 319-323. 

  7. Choi, H. J., Kim, S. A., Kim, D. W., Moon, J. Y., Jeong, Y. K. and Joo, W. H. 2008. Characterization of Pseudomonas sp. BCNU 171 tolerant to organic solvents. J. Basic Microbiol. 48, 473-479. 

  8. Choi, H. J., Hwang, M. J., Jeong, Y. K. and Joo, W. H. 2011. Evaluation of the Potential of Organic Solvent Tolerant Bacillus sp. BCNU 5005. J. Life Sci. 21, 700-705. 

  9. Choi, H. J., Hwang, M. J., Kim, B. S., Jeong, Y. K. and Joo, W. H. 2012. Potential of Organic Solvent Tolerant Bacillus sp. BCNU 5006. KSBB J. 27, 61-66. 

  10. Choi, H. J., Hwang, M. J., Seo, J. Y. and Joo, W. H. 2013. Organic Solvent-tolerant Lipase from Pseudomonas sp. BCNU 154. J. Life Sci. 23, 1246-1251. 

  11. Choi, H. J., Seo, J. Y., Hwang, S. M., Lee, Y. I., Jeong, Y. K., Moon, J. Y. and Joo, W. H. 2013. Isolation and characterization of BTEX tolerant and degrading Pseudomonas putida BCNU 106. Biotechnol. Bioprocess Eng. 18, 1000-1007. 

  12. Choi, H. J., Kwon, G. S. and Joo, W. H. 2014. Production of Indigoid Pigments by Persolvent Fermentation with Pseudomonas putida BCNU 106. J. Life Sci. 24, 81-85. 

  13. Choi, H. J., Yoo, J. S., Jeong, Y. K. and Joo, W. H. 2014. Involvement of antioxidant defense system in solvent tolerance of Pseudomonas putida BCNU 106. J. Basic Microbiol. 54, 945-950. 

  14. Cruden, D. L., Wolfram, J. H., Rogers, R. T. and Gibson, D. T. 1992. Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic-aqueous) medium. Appl. Environ. Microbiol. 58, 2723?2729. 

  15. Dandavate, V., Jinjala, J., Keharia, H. and Madamwar, D. 2009. Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresour. Technol. 100, 3374-3381. 

  16. De Carvalho, C. C. C, R, Da Cruz, A. A., Pons, M. N., Pinheiro, H. M., Cabral, J., Da Fonseca, M. M. R., Ferreira, B. S. and Fernandes, P. 2004. Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microsc. Res. Tech. 64, 215-222. 

  17. De Carvalho, C. C. C. R. and Ds Fonseca, M. M. R. 2005. Degradation of hydrocarbons and alcohols at different emperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol. Ecol. 51, 389-399. 

  18. De Carvalho, C. C. C. R., Parreño-Marchante, B., Neumann, G., Da Fonseca, M. M. R., and Heipieper, H. J. 2005. Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl. Microbiol. Biotechnol. 67, 383-388. 

  19. De Bont, J. A. 1998. Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol. 16, 493-499. 

  20. Diefenbach, R., Heipieper, H. J. and Keweloh, H. 1992. The conversion of cis into trans unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl. Microbiol. Biotechnol. 38, 382-387. 

  21. Domínguez-Cuevas, P., González-Pastor, J. E., Marqués, S., Ramos, J. L. and de Lorenzo, V. 2006. Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J. Biol. Chem. 281, 11981-11991. 

  22. Duque, E., Rodríguez-Herva, J. J., de la Torre, J., Domínguez-Cuevas, P., Muñoz-Rojas, J. and Ramos, J. L. 2007. The RpoT regulon of Pseudomonas putida DOT-T1E and its role in stress endurance against solvents. J. Bacteriol. 189, 207-219. 

  23. Essam, T., Amin, M. A., El Tayeb, O., Mattiasson, B. and Guieysse, B. 2010. Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1. J. Hazard. Mater. 173, 783-788. 

  24. Geok, L. P., Razak, C. N. A., Rahman, R. N. Z. A., Basri, M. and Salleh, A. B. 2003. Isolation and screening of an extracellular organic solvent-tolerant protease producer. Biochem. Eng. J. 13, 73-77. 

  25. Hartmans S., van der Werf M. J. and de Bont J. A. M. 1990. Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl. Environ. Microbiol. 56, 1347-1351. 

  26. Hayashi, S., Kobayashi, T. and Honda, H. 2003. Simple and rapid cell growth assay using tetrazolium violet coloring method or screening of organic solvent tolerant bacteria. J. Biosci. Bioeng. 96, 360-363. 

  27. Heerema, L., Wierckx, N., Roelands, M., Hanemaaijer, J. H., Goetheer, E., Verdoes, D. and Keurentjes, J. 2011. In situ phenol emoval from fed-batch fermentations of solvent tolerant Pseudomonas putida S12 by pertraction. Biochem. Eng. J. 53, 245-252. 

  28. Heipieper, H. J., Loffeld, B., Keweloh, H. and de Bont, J. A. 1995. The cis/trans isomerisation of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere 30, 1041-1051. 

  29. Horikoshi, K. and Bull, A. T. 2011. Extremophiles handbook, pp. 3-15, Tokyo, Japan, Springer. 

  30. Hun, C. J., Rahman, R. N. Z. A., Salleh, A. B. and Basri, M. 2003. A newly isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent-stable lipase. Biochem. Eng. J. 15, 147-151. 

  31. Inoue, A. and Horikoshi, K. 1989. A Pseudomonas thrives in igh concentrations of toluene. Nature 338, 264-266. 

  32. Inoue, A. and Horikoshi, K. 1991. Estimation of solvent-tolerance of bacteria by the solvent parameter log P. J. Ferment. Bioeng. 71, 194-196. 

  33. Isken, S. and De Bont, J. A. 1996. Active efflux of toluene in solvent-resistant bacterium. J. Bacteriol. 178, 6056-6058. 

  34. Isar, J. and Rangaswamy, V. 2012. Improved n-butanol roduction by solvent tolerant Clostridium beijerinckii. Biomass Bioenergy 37, 9-15. 

  35. Ji, Q., Xiao, S., He, B. and Liu, X. 2010. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LX1 and its application for biodiesel production. J. Mol. Catal., B Enzym. 66, 264-269. 

  36. Joshi, C. and Khare, S. K. 2013. Purification and haracterization of Pseudomonas aeruginosa lipase produced by SF of deoiled Jatropha seed cake. Biocatal. Agric. Biotechnol. 2, 32-37. 

  37. Joshi, C., Mathur, P. and Khare, S. K. 2011. Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid- state fermentation of deoiled Jatropha curcas seed cake. Bioresour. Technol. 102, 4815-4819. 

  38. Junker, F. and Ramos, J. L. 1999. Involvement of the cis/trans Isomerase Cti in Solvent Resistance of Pseudomonas putida DOT-T1E. J. Bacteriol. 181, 5693-5700. 

  39. Kang, H. J., Heo, D. H., Choi, S. W., Kim, K. N., Shim, J., Kim, C. W., Sung, H. C. and Yun, C. W. 2007. Functional characterization of Hsp33 protein from Bacillus psychrosaccharolyticus; additional function of HSP33 on resistance to solvent stress. Biochem. Biophys. Res. Commun. 58, 743- 750. 

  40. Kawaguchi, H., Kobayashi, H. and Sato, K. 2012. Metabolic engineering of hydrophobic Rhodococcus opacus for iodesulfurization in oil?water biphasic reaction mixtures. J. Biosci. Bioeng. 113, 360-366. 

  41. Kieboom, J., Dennis, J. J., de Bont, J. A. and Zylstra, G. J. 1998. Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J. Biol. Chem. 273, 85-91. 

  42. Kobayashi, H., Takami, H., Hirayama, H., Kobata, K., Usami, R. and Horikoshi, K. 1999. Outer Membrane Changes in a Toluene-Sensitive Mutant of Toluene-Tolerant Pseudomonas putida IH-2000. J. Bacteriol. 181, 4493-4498. 

  43. Koopman, F., Wierckx, N., de Winde, J. H. and Ruijssenaars, H. J. 2010. Efficient whole-cell biotransformation of 5-(hydroxymethyl) furfural into FDCA, 2, 5-furandicarboxylic acid. Bioresour. Technol. 101, 6291-6296. 

  44. Lacal, J., Muñoz­Martínez, F., Reyes­Darías, J. A., Duque, E., Matilla, M., Segura, A., Ortega Calvo, J. J., Jiménez-Sanchez, C., Krell, T. and Ramos, J. L. 2011. Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ. Microbiol. 13, 1733-1744. 

  45. Matsumoto, M., de Bont, J. A. and Isken, S. 2002. Isolation and characterization of the solvent-tolerant Bacillus cereus strain R1. J. Biosci. Bioeng. 94, 45-51. 

  46. Moriya, K. and Horikoshi, K. 1993. Isolation of a benzenetolerant bacterium and its hydrocarbon degradation. J. Ferment. Bioeng. 76, 168-173. 

  47. Moriya, K. and Horikoshi, K. 1993. A benzene-tolerant bacterium utilizing sulfur compounds isolated from deep sea. J. Ferment. Bioeng. 76, 397-399. 

  48. Moriya, K., Yanagitani, S., Usami, R. and Horikoshi, K. 1995. Isolation and some properties of an organic-solvent-tolerant marine bacterium degrading cholesterol. J. Mar. Biotechnol. 2, 131-133. 

  49. Na, K. S., Kuroda, A., Takiguchi, N., Ikeda, T., Ohtake, H. and Kato, J. 2005. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J. Biosci. Bioeng. 99, 378-382. 

  50. Navacharoen, A. and Vangnai, A. S. 2011. Biodegradation of diethyl phthalate by an organic-solvent-tolerant Bacillus subtilis strain 3C3 and effect of phthalate ester coexistence. Int. Biodeterior. Biodegradation 65, 818-826. 

  51. Nielsen, L. E., Kadavy, D. R., Rajagopal, S., Drijber, R. and Nickerson, K. W. 2005. Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene. Appl. Environ. Microbiol. 71, 5171-5176. 

  52. Neumann, G., Veeranagouda, Y., Karegoudar, T. B., Sahin, Ö., Mäusezahl, I., Kabelitz, N., Kappelmeyer, U. and Heipieper, H. J. 2005. Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9, 163-168. 

  53. Neumann, G., Cornelissen, S., van Breukelen, F., Hunger, S., Lippold, H., Loffhagen, N., Wick, L. Y. and Heipieper, H. J. 2006. Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase. Appl. Environ. Microbiol. 72, 4232-4238. 

  54. Neumann, G., Kabelitz, N., Zehnsdorf, A., Miltner, A., ippold,H., Meyer, D., Schmid, A. and Heipieper, H. J. 2005. Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations. Appl. Environ. Microbiol. 71, 6606-6612. 

  55. Ogino, H., Yasui, K., Shiotani, T., Ishihara, T. and Ishikawa, H. 1995. Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl. Environ. Microbiol. 61, 4258-4262. 

  56. Paje, M. L. F. and Neilan, B. A. 1997. A Rhodococcus peciesthat thrives on medium saturated with liquid benzene. Microbiology 143, 2975-2981. 

  57. Panke, S., Witholt, B., Schmid, A. and Wubbolts, M.G. 1998. Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl. Environ. Microbiol. 64, 2032-2043. 

  58. Park, J. B., Bühler, B., Panke, S., Witholt, B. and Schmid, A. 2007. Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent tolerant Pseudomonas sp. strain VLB120℃. Biotechnol. Bioeng. 98, 1219-1229. 

  59. Pepi, M., Heipieper, H. J., Fischer, J., Ruta, M., Volterrani, M. and Focardi, S. E. 2008. Membrane fatty acids adaptive profile in the simultaneous presence of arsenic and toluene in Bacillus sp. ORAs2 and Pseudomonas sp. ORAs5 strains. Extremophiles 12, 343-349. 

  60. Petersohn, A., Brigulla, M., Haas, S., Hoheisel, J. D., Völker, U. and Hecker, M. 2001. Global analysis of the general stress response of Bacillus subtilis. J. Bacteriol. 183, 5617-5631. 

  61. Pinkart, H. C., Wolfram, J. W., Rogers, R. and White, D. C. 1996. Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Appl. Environ. Microbiol. 62, 1129-1132. 

  62. Qu, Y., Pi, W., Ma, F., Zhou, J. and Zhang, X. 2010. Influence and optimization of growth substrates on indigo formation by a novel isolate Acinetobacter sp. PP-2. Bioresour. Technol. 101, 4527-4532. 

  63. Ramos J. L., Duque E., Huertas M. J. and Haïdour A. 1995. Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J. Bacteriol. 177, 3911-3916. 

  64. Ramos, J. L., Duque, E., Godoy, P. and Segura, A. 1998. Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J. Bacteriol. 180, 3323-3329. 

  65. Ramos J. L., Duque E., Rodríguez-Herva J. J., Godoy P., Haïdour A., Reyes F. and Fernández-Barrero A. 1997. Mechanisms for solvent tolerance in bacteria. J. Biol. Chem. 272, 3887-3890. 

  66. Ramos, J. L., Duque, E., Gallegos, M. T., Godoy, P., Ramos-González, M. I., Rojas, A. Teran, W. and Segura, A. 2002. Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol. 56, 743-768. 

  67. Rojas, A., Duque, E., Mosqueda, G., Golden, G., Hurtado, A., Ramos, J. L. and Segura, A. 2001. Three Efflux Pumps Are Required to Provide Efficient Tolerance to Toluene in Pseudomonas putida DOT-T1E. J. Bacteriol. 183, 3967-3973. 

  68. Roma-Rodrigues, C., Santos, P. M., Benndorf, D., Rapp, E. and Sá-Correia, I. 2010. Response of Pseudomonas putida KT2440 to phenol at the level of membrane proteome. J. Proteomics 73, 1461-1478. 

  69. Ruijssenaars, H. J., Sperling, E. M., Wiegerinck, P. H., Brands, F. T., Wery, J. and de Bont, J. A. 2007. Testosterone 15β-hydroxylation by solvent tolerant Pseudomonas putida S12. J. Biotechnol. 131, 205-208. 

  70. Sardessai, Y. and Bhosle, S. 2002. Tolerance of bacteria to organic solvents. Res. Microbiol. 153, 263-268. 

  71. Sardessai, Y. and Bhosle, S. 2003. Isolation of an organic-solvent-tolerant cholesterol-transforming Bacillus species, BC1, from coastal sediment. Mar. Biotechnol. 5, 116-118. 

  72. Sardessai, Y. N. and Bhosle, S. 2004. Industrial potential of organic solvent tolerant bacteria. Biotechnol. Prog. 20, 655-660. 

  73. Segura, A., Godoy, P., van Dillewijn, P., Hurtado, A., Arroyo, N., Santacruz, S. and Ramos, J. L. 2005. Proteomic analysis eveals the participation of energy-and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J. Bacteriol. 187, 5937-5945. 

  74. Segura, A., Molina, L., Fillet, S., Krell, T., Bernal, P., Muñoz- Rojas, J. and Ramos, J. L. 2012. Solvent tolerance in ramnegativebacteria. Curr. Opin. Biotechnol. 23, 415-421. 

  75. Sikkema, J., De Bont, J. A. and Poolman, B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59, 201-222. 

  76. Tomas, C. A., Welker, N. E. and Papoutsakis, E. T. 2003. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl. Environ. Microbiol. 69, 4951-4965. 

  77. Torres, S., Baigorí, M. D. and Castro, G. R. 2005. Effect of hydroxylic solvents on cell growth, sporulation, and esterase production of Bacillus licheniformis S-86. Process Biochem. 40, 2333-2338. 

  78. Torres, S., Baigorí, M. D., Swathy, S. L., Pandey, A. and Castro, G. R. 2009. Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. Food Res. Int. 42, 454-460. 

  79. Torres, S., Pandey, A. and Castro, G. R. 2011. Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnol. Adv. 29, 442-452. 

  80. Uzel, A. and Ozdemir, G. 2009. Metal biosorption capacity of the organic solvent tolerant Pseudomonas fluorescens TEM08. Bioresour. Technol. 100, 5. 

  81. Veeranagouda, Y., Karegoudar, T. B., Neumann, G. and Heipieper, H. J. 2006. Enterobacter sp. VKGH12 growing with n­butanol as the sole carbon source and cells to which the alcohol is added as pure toxin show considerable differences in their adaptive responses. FEMS Microbiol. Lett. 254, 48-54. 

  82. Volkers, R. J., De Jong, A. L., Hulst, A. G., Van Baar, B. L., De Bont, J. A. and Wery, J. 2006. Chemostat­based proteomic analysis of toluene­affected Pseudomonas putida S12. Environ. Microbiol. 8, 1674-1679. 

  83. Wang, L., Qiao, N., Sun, F. and Shao, Z. 2008. Isolation, gene detection and solvent tolerance of benzene, toluene and xylene degrading bacteria from nearshore surface water and Pacific Ocean sediment. Extremophiles 12, 335-342. 

  84. Wang, S., Liu, G., Zhang, W., Cai, N., Cheng, C., Ji, Y., Sun, L,m Zhan, J. and Yuan, S. 2014. Efficient glycosylation of puerarin by an organic solvent-tolerant strain of Lysinibacillus fusiformis. Enzyme Microb. Technol. 57, 42-47. 

  85. Watanabe, R. and Doukyu, N. 2014. Improvement of organic solvent tolerance by disruption of the lon gene in Escherichia coli. J. Biosci. Bioeng. 118, 139-144. 

  86. Weber, F. J., Ooijkaas, L. P., Schemen, R. M., Hartmans, S. and de Bont, J. A. 1993. Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl. Environ. Microbiol. 59, 3502-3504. 

  87. Weber, F. J. and de Bont, J. A. 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on embranes. Biochim. Biophys. Acta 1286, 225-245. 

  88. Wick, L., De Munain, A., Springael, D. and Harms, H. 2002. Responses of Mycobacterium sp. LB501T to the low ioavailabilityof solid anthracene. Appl. Microbiol. Biotechnol. 58, 378-385. 

  89. Wierckx, N. J., Ballerstedt, H., de Bont, J. A. and Wery, J. 2005. Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl. Environ. Microbiol. 71, 8221-8227. 

  90. Williams, T. I., Combs, J. C., Lynn, B. C. and Strobel, H. J. 2007. Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl. Microbiol. Biotechnol. 74, 422-432. 

  91. Wu, X., Chu, J., Wu, B., Zhang, S. and He, B. 2013. An efficient novel glycosylation of flavonoid by β-fructosidase resistant to hydrophilic organic solvents. Bioresour. Technol. 129, 659-662. 

  92. Yamashita, S., Satoi, M., Iwasa, Y., Honda, K., Sameshima, Y., Omasa, T., Kato, J. and Ohtake, H. 2007. Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cellcatalyst in anhydrous organic solvents. Appl. Microbiol. Biotechnol. 74, 761-767. 

  93. Yao, C., Cao, Y., Wu, S., Li, S. and He, B. 2013. An organic solvent and thermally stable lipase from Burkholderia ambifaria YCJ01: purification, characteristics and application for chiral resolution of mandelic acid. J. Mol. Catal., B Enzym. 85, 105-110. 

  94. Zahir, Z., Seed, K. D. and Dennis, J. J. 2006. Isolation and characterization of novel organic solvent-tolerant bacteria. Extremophiles 10, 129-138. 

  95. Zhang, S., Zhou, Z., Yao, Z. and He, B. 2013. Efficient roduction of skimmin and 6′-succinylskimmin from umbelliferone by organic solvent-tolerant Bacillus licheniformis ZSP01 using nitrogen sources regulation strategy. Biochem. Eng. J. 71, 105-110. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로