$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

신경아교세포의 정상 기능과 정신장애에서 나타나는 신경아교세포 이상에 대한 고찰
Neuroglial Cells : An Overview of Their Physiological Roles and Abnormalities in Mental Disorders 원문보기

생물정신의학 = Korean journal of biological psychiatry, v.22 no.2, 2015년, pp.29 - 33  

이경민 (경북대학교 의학전문대학원 해부학교실)

Abstract AI-Helper 아이콘AI-Helper

The brain maintains homeostasis and normal microenvironment through dynamic interactions of neurons and neuroglial cells to perform the proper information processing and normal cognitive functions. Recent post-mortem investigations and animal model studies demonstrated that the various brain areas s...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서, 본 종설에서는 뇌에서 관찰되는 주요 신경아교세포의 종류와 정상 기능에 대해 먼저 논하고 주요 정신장애에서 나타난 신경아교세포의 비정상적인 발현 및 기능을 밝힌 연구 내용을 중심으로 주요 정신장애와 신경아교세포의 연관성에 대해 알아보고자 한다.

가설 설정

  • 활성화된 별아교세포에서 분비되는 GABA는 알츠하이머 병(Alzheimer’s disease)에서 기억력 저하를 촉진할 수 있고,32) 알츠하이머 병의 대표적인 특징 중 하나인 뇌 대사 저하(hypometabolism) 또한 별아교세포 내 포도당 대사 혹은 glutamate 대사의 이상에서 기인하는 것으로써 이것은 기억력 저하와 스트레스에 대한 저항성을 떨어뜨리는 기전으로 설명될 수 있다.51) 아밀로이드 베타(amyloid beta)에 의한 희소돌기아교세포와 수초의 손상은 결국 신경세포 사멸을 유도하여 알츠하이머 병에서 인지기능 저하를 유도할 수 있다.52) 또한, 대뇌피질 내 미세아교세포의 비정상적인 수적 증가 및 활성화에 의한 염증반응은 아밀로이드 베타의 발현을 증가시키고 신경세포 내 포도당 대사를 감소시켜 알츠하이머 병의 인지기능 장애를 일으킬 수 있음이 밝혀졌다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
신경아교세포란 무엇인가? 신경계를 구성하는 세포들 중 신경세포가 아닌 비신경세포들을 총칭하여 신경아교세포라 한다. 신경아교세포 대부분은 신경세포와 마찬가지로 신경상피세포(neuroepithelialcell)에서 발생하기 때문에 구조적 혹은 분자적인 특성면에서 신경세포와 닮은 점도 있으나,6) 여러 가지 면에서 상당히 다른 특성을 가진다.
최근 10여년이 신경아교세포 연구에서 혁명적인 시기라고 할 수 있는 이유는 무엇인가? 이런 맥락에서 볼 때, 최근 10여 년은 신경아교세포 연구에 있어 과히 혁명적인 시기라고 할 수 있다. 지금 우리는 별아교세포(astrocyte)가 뇌 신경세포들 간의 간격을 채워주고 이어주는 풀(glue)로서 기능한다2)는 Camillo Golgi의 주장에서 벗어나 신경세포의 기능을 직·간접적으로 지지하고 공유한다3)는 사실을 알고 있고, 수초(myelin sheath)를형성하는 희소돌기아교세포(oligodendrocyte)와 뇌에서 면역기능을 담당하는 미세아교세포(microglia) 또한 뇌의 정상기능 유지에 중요하다는 사실을 알고 있다.4)5) 이와 더불어 최근에는 신경아교세포와 주요 정신장애(mental disorders)와의 연관성, 즉 비정상적인 신경아교세포의 발현과 기능이 주요 정신장애의 발병과 증상 유발에 어떤 역할을 하는지에 대한 의문이 크게 주목을 받고 있다.
중추신경계에서 관찰되는 신경아교세포는 어떻게 나뉘는가? 중추신경계에서 관찰되는 신경아교세포는 크게 세 가지로 나뉜다 : 별아교세포(astrocyte), 희소돌기아교세포(oligodendrocyte), 그리고 미세아교세포(microglia). 아래에서는 최근까지 밝혀진 각 신경아교세포의 고유 기능에 대해 설명하고자 한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (53)

  1. Bogerts B, Hantsch J, Herzer M. A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol Psychiatry 1983;18:951-969. 

  2. Purves D. Neuroscience. 4th ed. Sunderland: Sinauer Associates, Inc.;2008. p.9-10. 

  3. Oberheim NA, Goldman SA, Nedergaard M. Heterogeneity of astrocytic form and function. Methods Mol Biol 2012;814:23-45. 

  4. Beumer W, Gibney SM, Drexhage RC, Pont-Lezica L, Doorduin J, Klein HC, et al. The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 2012;92:959-975. 

  5. Haroutunian V, Katsel P, Roussos P, Davis KL, Altshuler LL, Bartzokis G. Myelination, oligodendrocytes, and serious mental illness. Glia 2014;62:1856-1877. 

  6. Kandel ER. Principles of Neural Science. 5th ed. New York: Mc-Graw-Hill Professional;2012. p.71. 

  7. Stevenson JA, Yoon MG. Mitosis of radial glial cells in the optic tectum of adult goldfish. J Neurosci 1981;1:862-875. 

  8. Peters A, Palay SL, Webster HD. The Fine Structure of the Nervous System. New York: Oxford University Press;1991. 

  9. Laming PR, Kimelberg H, Robinson S, Salm A, Hawrylak N, Muller C, et al. Neuronal-glial interactions and behaviour. Neurosci Biobehav Rev 2000;24:295-340. 

  10. Hamilton NB, Attwell D. Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 2010;11:227-238. 

  11. Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V. Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 2012;4. pii: e00080. doi:10.1042/AN20110061. 

  12. Lee M, Schwab C, McGeer PL. Astrocytes are GABAergic cells that modulate microglial activity. Glia 2011;59:152-165. 

  13. Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 2005;6: 626-640. 

  14. Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron 2014;81: 728-739. 

  15. Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 2002;417:941-944. 

  16. Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 2000; 403:434-439. 

  17. Prinjha R, Moore SE, Vinson M, Blake S, Morrow R, Christie G, et al. Inhibitor of neurite outgrowth in humans. Nature 2000;403:383-384. 

  18. Raiker SJ, Lee H, Baldwin KT, Duan Y, Shrager P, Giger RJ. Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity. J Neurosci 2010;30:12432-12445. 

  19. Steiner J, Bogerts B, Sarnyai Z, Walter M, Gos T, Bernstein HG, et al. Bridging the gap between the immune and glutamate hypotheses of schizophrenia and major depression: Potential role of glial NMDA receptor modulators and impaired blood-brain barrier integrity. World J Biol Psychiatry 2012;13:482-492. 

  20. Wakselman S, Bechade C, Roumier A, Bernard D, Triller A, Bessis A. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J Neurosci 2008;28:8138-8143. 

  21. Dalmau I, Finsen B, Tonder N, Zimmer J, Gonzalez B, Castellano B. Development of microglia in the prenatal rat hippocampus. J Comp Neurol 1997;377:70-84. 

  22. Morgan SC, Taylor DL, Pocock JM. Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem 2004;90:89-101. 

  23. Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 2010;7:483-495. 

  24. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996;19:312-318. 

  25. Kirkham M, Berg DA, Simon A. Microglia activation during neuroregeneration in the adult vertebrate brain. Neurosci Lett 2011; 497:11-16. 

  26. Welberg L. Synaptic plasticity: a synaptic role for microglia. Nat Rev Neurosci 2014;15:69. 

  27. Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 1998; 95:13290-13295. 

  28. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI. Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 2004;67:269-275. 

  29. Jones CA, Watson DJ, Fone KC. Animal models of schizophrenia. Br J Pharmacol 2011;164:1162-1194. 

  30. Malki K, Pain O, Tosto MG, Du Rietz E, Carboni L, Schalkwyk LC. Identification of genes and gene pathways associated with major depressive disorder by integrative brain analysis of rat and human prefrontal cortex transcriptomes. Transl Psychiatry 2015;5:e519. 

  31. Gotz J, Ittner LM. Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci 2008;9:532-544. 

  32. Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nat Med 2014;20:886-896. 

  33. Pantazopoulos H, Woo TU, Lim MP, Lange N, Berretta S. Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch Gen Psychiatry 2010;67:155-166. 

  34. Haybaeck J, Postruznik M, Miller CL, Dulay JR, Llenos IC, Weis S. Increased expression of retinoic acid-induced gene 1 in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression. Neuropsychiatr Dis Treat 2015;11:279-289. 

  35. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003;362:798-805. 

  36. Vostrikov V, Uranova N. Age-related increase in the number of oligodendrocytes is dysregulated in schizophrenia and mood disorders. Schizophr Res Treatment 2011;2011:174689. 

  37. Miyata S, Hattori T, Shimizu S, Ito A, Tohyama M. Disturbance of oligodendrocyte function plays a key role in the pathogenesis of schizophrenia and major depressive disorder. Biomed Res Int 2015; 2015:492367. 

  38. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, et al. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 2008;64:820-822. 

  39. Mizoguchi Y, Kato TA, Horikawa H, Monji A. Microglial intracellular Ca(2+) signaling as a target of antipsychotic actions for the treatment of schizophrenia. Front Cell Neurosci 2014;8:370. 

  40. Mattei D, Djodari-Irani A, Hadar R, Pelz A, de Cossio LF, Goetz T, et al. Minocycline rescues decrease in neurogenesis, increase in microglia cytokines and deficits in sensorimotor gating in an animal model of schizophrenia. Brain Behav Immun 2014;38:175-184. 

  41. Gosselin RD, Gibney S, O'Malley D, Dinan TG, Cryan JF. Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression. Neuroscience 2009;159: 915-925. 

  42. Altshuler LL, Abulseoud OA, Foland-Ross L, Bartzokis G, Chang S, Mintz J, et al. Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord 2010; 12:541-549. 

  43. Banasr M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 2008;64: 863-870. 

  44. Williams MR, Sharma P, Fung KL, Pearce RK, Hirsch SR, Maier M. Axonal myelin increase in the callosal genu in depression but not schizophrenia. Psychol Med 2015 Feb 25 [Epub]. http://dx.doi.org/10.1017/S0033291715000136. 

  45. Frick LR, Williams K, Pittenger C. Microglial dysregulation in psychiatric disease. Clin Dev Immunol 2013;2013:608654. 

  46. Bayer TA, Buslei R, Havas L, Falkai P. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 1999; 271:126-128. 

  47. Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation 2011;8:94. 

  48. G?dek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J. Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacol Rep 2013;65:1655-1662. 

  49. Pan Y, Chen XY, Zhang QY, Kong LD. Microglial NLRP3 inflammasome activation mediates IL-1 ${\beta}$ -related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun 2014;41:90-100. 

  50. Watkins CC, Sawa A, Pomper MG. Glia and immune cell signaling in bipolar disorder: insights from neuropharmacology and molecular imaging to clinical application. Transl Psychiatry 2014;4:e350. 

  51. Tarczyluk MA, Nagel DA, Rhein Parri H, Tse EH, Brown JE, Coleman MD, et al. Amyloid ${\beta}$ 1-42 induces hypometabolism in human stem cell-derived neuron and astrocyte networks. J Cereb Blood Flow Metab 2015 Apr 8 [Epub]. http://dx.doi.org/10.1038/jcbfm.2015.58. 

  52. Desai MK, Mastrangelo MA, Ryan DA, Sudol KL, Narrow WC, Bowers WJ. Early oligodendrocyte/myelin pathology in Alzheimer's disease mice constitutes a novel therapeutic target. Am J Pathol 2010;177:1422-1435. 

  53. Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, et al. Influence of microglial activation on neuronal function in Alzheimer's and Parkinson's disease dementia. Alzheimers Dement 2014 Sep 16 [Epub]. http://dx.doi.org/10.1016/j.jalz.2014.06.016. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로