$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

구상나무와 분비나무분포지의 환경 특성 및 기후변화 민감성 평가
Environmental features of the distribution areas and climate sensitivity assesment of Korean Fir and Khinghan Fir 원문보기

환경영향평가 = Journal of environmental impact assessment, v.24 no.3, 2015년, pp.260 - 277  

박현철 (강원대학교 대학원 조경학과) ,  이정환 (강원대학교 환경연구소) ,  이규관 (강원대학교 조경학과) ,  엄기증 (한국기후변화대응연구센터)

초록
AI-Helper 아이콘AI-Helper

본 연구는 대표적인 아고산식물인 동일속 식물 구상나무와 분비나무기후변화 민감성 평가에 목적이 있다. 이를 위해 종 분포 모형을 이용하여 현재 및 미래의 종 분포 확률을 예측하였고 기후변화 민감성 평가를 하였다. MTSS를 기준으로 예측된 잠재 분포지는 분비나무가 구상나무보다 감소율이 많았으며, 스칼라 민감도를 이용한 평가에서는 구상나무의 민감도가 분비나무보다 높았다. 본 연구와 같은 종 분포 모형을 이용한 연구에서는 위치자료 및 환경변수에 따라 종 분포 확률이 달라질 수 있으므로 연구 대상종의 생태 환경에 대한 면밀한 조사가 선결되어야 하며, 본 연구를 기초로 하여 국내에 적용 가능한 기후변화민감성 평가 방법이 개발된다면 기후변화와 생물 다양성 적응 정책의 중요한 의사결정 수단이 될 것으로 기대한다.

Abstract AI-Helper 아이콘AI-Helper

The object of this study was the climate change sensitivity assessment of Korean Fir and Khinghan Fir as a representative subalpine plant in South Korea. Using species distribution models, we predicted the probability of current and future species distribution. According to this study, potential dis...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 기후변화에 의한 생물다양성 보전을 위해서는 지표생물의 선정 및 민감성 평가가 필수적이지만, 지표생물의 민감성 평가에 대한 국내 연구는 미진한 편이다(유가영과 김인애, 2008). 따라서 본 연구는 대표적 아고산식물이며 국가기후변화생물지표로 선정된 구상나무와 분비나무의 위치자료를 수집하여 1)두 종간 환경, 지리적 분포 비교, 2)기후변화 시나 리오에 의한 분포지 예측 3)기후변화 민감성 평가를 실시하여 아고산식물의 서식지내(In-situ) 보전을 위한 의사결정 방법 및 기후변화 적응 정책을 위한 기초자료 제공을 위해 시행되었다.
  • 본 연구는 기후변화에 취약할 것으로 예상되는 아고산식물을 대상으로 기후변화 민감성평가를 시도하였으며 결과는 다음과 같다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
한국에서 구상나무의 분포지역은 어디인가? , 2011). 한국 고유종인 구상나무의 분포지역은 덕유산, 지리산, 가야산, 한라산이며 덕유산이 북방한계선으로 알려져 있다(공우석, 2006). 분비나무는 세계적으로 한반도 중부 이북(소백산, 오대산, 설악산 등과 북한), 만주, 시베리아에 분포하며 IUCN 약관심종(Least Concern) 으로 등재되어 있다(Song, 1991; Zhang et al.
한국에 분포하는 전나무속 식물에는 무엇이 있는가? )는 한국의 아고산 지대에 분포하는 전나무속 식물이다. 전 세계적으로 전나무속 식물은 약 52종이 있으며, 한국에는 전나무(Abies holophylla Maxim.), 구상나무, 분비나무 3종이 분포한다(Xiang et al., 2007; Kormuták et al.
구상나무와 분비나무가 분포하는 아고산대의 특징은 무엇인가? , 2010; 공우석 등, 2014). 아고산대는 기온이 낮고 식물의 생육 일수가 짧으며, 바람이 강하고, 적설량이 불규칙하여 여러 기후요소의 연교차가 심하다. 또한 토질이 척박하고 빙하 주변 지역처럼 토양의 결해빙이 반복되는 주빙하성(peri-glacial) 지형간섭으로 식물이 살아가기에 지극히 불리한 환경이다. 이러한 환경에서 적응된 고산식물은 기온이 높아지면서 온대성 식물들과의 경쟁에서 밀려 사라질 위기를 맞고 있다(공우석, 1998; 1999; 2002).
질의응답 정보가 도움이 되었나요?

참고문헌 (64)

  1. 국립환경과학원. 2007a. 백두대간 보호지역 생태계 조사(육십령-지리산).(NIER. 2007a. Ecosystem survey of Baekdudaegan Protected Area(Yuksipryeong-Jirisan).) 

  2. 국립환경과학원. 2007b. 백두대간 보호지역 생태계 조사(속리산형제봉-지리산).(NIER. 2007b. Ecosystem survey of Baekdudaegan Protected Area(Songnisan-Jirisan).) 

  3. 국립환경과학원. 2008. 백두대간 보호지역 생태계 조사(삼척댓재-속리산 형제봉).(NIER. 2008. Ecosystem survey of Baekdudaegan Protected Area(Daetjae-Songnisan).) 

  4. 국립환경과학원. 2009. 백두대간 보호지역 생태계 조사(오대산진고개-삼척댓재).(NIER. 2009. Ecosystem survey of Baekdudaegan Protected Area(Odaesan-Daetjae).) 

  5. 국립환경과학원. 2010. 백두대간 보호지역 생태계 조사(고성향로봉-오대산진고개).(NIER. 2010. Ecosystem survey of Baekdudaegan Protected Area(Hyangrobong-Odaesan).) 

  6. 공우석. 1998. 한라산 고산식물의 분포 특성, 대한지리학회지, 33, 191-208.(Kong WS. 1998. The Distributional Patterns of Alpine Plants of Mt. Halla, Cheju Island, Korea, Journal of the Korean Geographical Society, 33, 191-208.) 

  7. 공우석. 1999. 한라산의 수직적 기온 분포와 고산식물의 온도적 범위, 대한지리학회지, 34, 385-393.(Kong WS. 1999. The Vertical Distribution on Air Temperature and Thermal Amplitude of Alpine Plants on Mt. Halla, Cheju Island, Korea, Journal of the Korean Geographical Society, 34, 385-393.) 

  8. 공우석. 2002. 한반도 고산식물의 구성과 분포, 대한지리학회지, 37, 357-370.(Kong WS. 2002. Species composition and distribution of Korean alpine plants, Journal of the Korean Geographical Society, 37, 357-370.) 

  9. 공우석. 2006. 한반도에 자생하는 소나무과 나무의 생물지리, 대한지리학회, 41(1), 73-93.(Kong WS. 2006. Biogeography of native Korean Pinaceae, Journal of the Korean Geographical Society, 41, 73-93.) 

  10. 공우석, 김건옥, 이슬기, 박희나, 조수현. 2014. 한반도 주요 산정의 식물종 분포와 기후변화 취약종, 환경영향평가, 23(2), 119-136.(Kong WS, Kim KO, Lee SG, Park HN, Cho SH. 2014. Distribution of High Mountain Plants and Species Vulnerability Against Climate Change, Journal of Environmental Impact Assessment, 23(2), 119-136.) 

  11. 구경아, 박원규, 공우석. 2001. 한라산 구상나무(Abies koreana W.)의 연륜연대학적 연구-기후변화에 따른 생장변동 분석, 한국생태학회지, 24(5), 281-288.(Koo KA, Park WK, Kong WS. 2001. Effects of Climate Change on the Growths Dendrochronological Analysis of Abies koreana W. at Mt. Halla, Korea, Journal of Ecology and Environment, 24(5), 281-288.) 

  12. 임종환, 우수영, 권미정, 천정화, 신준환. 2006. 한라산 구상나무 건전개체와 쇠약개체의 온도 변화에 따른 광합성능력과 수분이용효율, 한국임학회지, 95(6), 705-710.(Lim JH, Woo SY, Kwon MJ, Chun JH, Shin JH. 2006. Photosynthetic Capacity and Water Use Efficiency under Different Temperature Regimes on Healthy and Declining Korean Fir in Mt. Halla, Journal of Korean Forest Society, 95(6), 705-710.) 

  13. 유가영, 김인애. 2008. 기후변화 취약성 평가지표의 개발 및 도입방안, 한국환경정책 평가연구원.(Yoo GY, Kim IE. 2008. Development and introduction method of vulnerability assessment indicators of climate change, Korea Environment Institute, RE-05.) 

  14. 홍용표, 안지영, 김영미, 양병훈, 송정호. 2011. 남한지역 구상나무와 분비나무 집단에서의 nSSR 표지 유전 변이, 한국임학회지, 100, 557-584.(Hong YP, Ahn JY, Kim YM, Yang BH, Song JH. 2011. Genetic Variation of nSSR Markers in Natural Populations of Abies koreana and Abies nephrolepis in South Korea, J Korean For Soc, 100, 557-584.) 

  15. 환경부, 국립환경과학원. 2014. 한국 기후변화 평가 보고서 2014 -기후변화 영향 및 적응.(MOE, NIER. 2014. Korean climate change assessment report 2014.) 

  16. Austin M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches, Ecol Model, 200, 1-19. 

  17. Bertin RI. 2008. Plant phenology and distribution in relation to recent climate change, The Journal of the Torrey Botanical Society, 135(1), 126-146. 

  18. Betts MG, Diamond AW, Forbes GJ, Villard MA, Gunn JS. 2006. The importance of spatial autocorrelation, extent and resolution in predicting forest bird occurrence, Ecol Model 191, 197-224. 

  19. Bochet E, Rubio JL, Poesen J. 1999. Modified topsoil islands within patchy Mediterranean vegetation in SE Spain, CATENA, 38, 23-44. 

  20. Brown JL. 2014. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses, Methods Ecol Evol, 5, 694-700. 

  21. Chuine I. 2010. Why does phenology drive species distribution? Philos Trans R Soc B Biol Sci, 365, 3149-3160. 

  22. Chuine I, Beaubien EG. 2001. Phenology is a major determinant of tree species range, Ecol Lett, 4, 500-510. 

  23. Cousins SA, Lindborg R. 2004. Assessing changes in plant distribution patterns-indicator species versus plant functional types, Ecol Indic, 4, 17-27. 

  24. Crossman ND, Bryan BA, Summers DM. 2012. Identifying priority areas for reducing species vulnerability to climate change, Diversity and Distributions, 18(1), 60-72. 

  25. Dormann CF. 2007. Effects of incorporating spatial autocorrelation into the analysis of species distribution data, Glob Ecol Biogeogr, 16, 129-138. 

  26. Elith J, Leathwick JR. 2009. Species distribution models: ecological explanation and prediction across space and time, Annu Rev Ecol Evol Syst, 40, 677. 

  27. Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ. 2011. A statistical explanation of MaxEnt for ecologists, Divers Distrib 17, 43-57. 

  28. Eo JK, Hyun JO. 2013. Comparative anatomy of the needles of Abies koreana and its related species, Turk J Bot, 37, 553-560. 

  29. Franklin J. 2010. Mapping species distributions: spatial inference and prediction, Cambridge University Press. 

  30. Guo WY, Lambertini C, Li XZ, Meyerson LA, Brix H. 2013. Invasion of Old World Phragmites australis in the New World: precipitation and temperature patterns combined with human influences redesign the invasive niche, Glob Change Biol, 19, 3406-3422. 

  31. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas, Int J Climatol, 25, 1965-1978. 

  32. Hodkinson DJ, Thompson K. 1997. Plant Dispersal: The Role of Man, J Appl Ecol, 34, 1484. 

  33. Hof AR, Jansson R, Nilsson C. 2012. The usefulness of elevation as a predictor variable in species distribution modelling, Ecological Modelling, 246, 86-90. 

  34. Hosmer Jr DW, Lemeshow S. 2004. Applied logistic regression, John Wiley & Sons. 

  35. IPCC. 2014. Climate change 2014: impacts, adaptation, and vulnerability. 

  36. Jobbagy EG, Jackson RB. 2001. The distribution of soil nutrients with depth: global patterns and the imprint of plants, Biogeochemistry, 53, 51-77. 

  37. Kramer-Schadt S, Niedballa J, Pilgrim JD, Schroder B, Lindenborn J, Reinfelder V, Wilting A. 2013. The importance of correcting for sampling bias in MaxEnt species distribution models, Diversity and Distributions, 19(11), 1366-1379. 

  38. Khanum R, Mumtaz AS, Kumar S. 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling, Acta Oecologica, 49, 23-31. 

  39. Kim YS, Chang CS, Kim CS, Gardner M. 2011. Abies koreana. The IUCN Red List of Threatened Species, Version 2014.3, , Downloaded on 09 January 2015. 

  40. Kormutak A, Lee SW, Hong KN, Yang BH, Hong YP. 2008. Crossability relationships between Korean firs Abies koreana, A. nephrolepis and A. holophylla and some other representatives of the genus Abies, Biologia (Bratisl), 63, 94-99. 

  41. Lee BY, Nam GH, Yun JH, Cho GY, Lee JS, Kim JH, Oh KH. 2010. Biological indicators to monitor responses against climate change in Korea, Korean J Pl Taxon, 40, 202-207. 

  42. Liu C, White M, Newell G. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data, (R. Pearson, ed.) J Biogeogr, 40, 778-789. 

  43. McCormack JE, Zellmer AJ, Knowles LL. 2010. Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: insights from tests with niche models, Evolution, 64, 1231-1244. 

  44. Merow C, Smith MJ, Silander JA. 2013. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter, Ecography, 36, 1058-1069. 

  45. Naimi B, Skidmore AK, Groen TA, Hamm NA. 2011. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling, J Biogeogr, 38, 1497-1509. 

  46. Parmesan C. 2006. Ecological and evolutionary responses to recent climate change, Annu Rev Ecol Evol Syst, 637-669. 

  47. Pearson RG, Raxworthy CJ, Nakamura M, Townsend PA. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar, J Biogeogr, 34, 102-117. 

  48. Phillips SJ, Dudik M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175. 

  49. Rathcke B, Lacey EP. 1985. Phenological patterns of terrestrial plants, Annu Rev Ecol Syst, 179-214. 

  50. Segurado P, Araujo MB, Kunin WE. 2006. Consequences of spatial autocorrelation for niche-based models, J Appl Ecol, 43, 433-444. 

  51. Song JS. 1991. Phytosociology of subalpine coniferous forests in Korea I. Syntaxonomical interpretation, Ecol Res, 6, 1-19. 

  52. Swets JA. 1988. Measuring the accuracy of diagnostic systems, Science, 240, 1285-1293. 

  53. Thuiller W, Lavorel S, Midgley G, Lavergne S, Rebelo T. 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa, Ecology, 85, 1688-1699. 

  54. Veloz SD. 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models, J Biogeogr, 36, 2290-2299. 

  55. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, et al. 2002. Ecological responses to recent climate change, Nature, 416, 389-395. 

  56. Warren DL, Seifert SN. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria, Ecol Appl, 21, 335-342. 

  57. Watling JI, Romanach SS, Bucklin DN, Speroterra C, Brandt LA, Pearlstine LG, Mazzotti FJ. 2012. Do bioclimate variables improve performance of climate envelope models? Ecol Model, 246, 79-85. 

  58. Wilson EH. 1920. Four new conifers from Korea, J Arnold Arbor, 1, 186-190. 

  59. Woo SY, Lim JH, Lee DK. 2008. Effects of temperature on photosynthetic rates in Korean fir(Abies koreana) between healthy and dieback population, Journal of integrative plant biology, 50(2), 190-193. 

  60. Woodward FI. 1987. Climate and plant distribution, Cambridge University Press. 

  61. Woodward FI, Beerling DJ. 1997. The dynamics of vegetation change: health warnings for equilibrium 'dodo' models, Global Ecology and Biogeography Letters, 413-418. 

  62. Xiang X, Cao M, Zhou Z. 2007. Fossil history and modern distribution of the genus Abies (Pinaceae), Front For China, 2, 355-365. 

  63. Zhang D, Katsuki T, Rushforth K. 2013. Abies nephrolepis, The IUCN Red List of Threatened Species, Version 2014.3, , Downloaded on 09 January 2015. 

  64. http://library.me.go.kr 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로