$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

지질구조에 대한 모델링기반 학습에서 나타나는 논증패턴과 정신모형 수준에 대한 분석
Analysis on the Argumentation Pattern and Level of Students' Mental Models in Modeling-based Learning about Geologic Structures 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.35 no.5, 2015년, pp.919 - 929  

박수경 (부산대학교)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 지질구조에 대한 모델링기반 학습 프로그램을 개발하고 모델링기반 학습에서 나타나는 논증패턴과 학생들의 정신모형 수준과의 관계를 밝히고자 하였다. 고등학교 2학년 126명을 대상으로 대륙이동설, 해령, 변환단층, 단층의 특징에 대하여 4회의 모델링기반 학습을 실시하였다. 연구대상 중에서 2개 학급은 실험집단으로 모델링기반 학습을 실시하였고 나머지 2개 학급은 비교집단으로 교사중심 설명식 수업을 실시하였다. 모델링기반 학습 후 실험집단과 비교집단의 사후 성취도와 학생들의 정신모형 분포를 정량적으로 비교하였다. 실험집단 중 5개 조의 논증활동을 녹음 전사한 자료에 대하여 본 연구에서 설정한 분석틀을 근거로 정성적으로 분석하였다. 본 연구의 분석틀은 TAP의 5가지 요소와 학생들의 대안개념이 포함되는 요소 5가지 등 총 10가지의 코딩 요소로 구성하였다. 정신모형 유형을 조사한 결과, 실험집단에서 단면 인과모형과 입체형 모형의 비율이 높게 나타난 반면, 비교집단에서는 2차원 모형과 단면 단순모형의 비중이 높게 나타났다. 논증유형을 분석한 결과, 주장의 빈도가 높을수록 논증활동이 성공적으로 이루어졌고 정신모형의 수준이 높게 나타났다. 반박이 제기된 경우, 만든 모형을 다시 관찰하여 자료를 수정하고, 이에 따라 주장을 다시 전개하였다. 이로써 모델링기반 학습에서 모형이 학생들의 논증 과정에 긍정적으로 작용함을 확인할 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

This study aims to develop a modeling-based learning program about geologic structures and to reveal the relationship between the argumentation patterns and levels of students' mental models. Participants included 126 second grade high school students in four sessions of modeling-based learning rega...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
논문의 저자가 연구에서 사용한 TAP의 5가지 요소가 의미하는 것은 각각 무엇인가? 본 연구에서 사용한 TAP의 5가지 요소는 자료(Data), 주장(Claim), 보장(Warrant), 보강(Backing), 반박(Rebuttal)이다. 자료는 주장이 타당성을 가지기 위해 제시하는 관찰사실이나 주장이 도출 되는 증거, 배경, 지식을 의미한다. 주장은 자료를 바탕으로 이끌어낸 개인의 생각 또는 대안으로 지지를 받고자 하는 진술이다. 보장은 자료와 주장을 연결하면서 정당화하는 진술로 자료와는 다른 측면에서 주장을 지지하는 진술이며, 보강은 보장을 강화시키기 위하여 구체적인 상황이나 사례, 이론 등을 제시한 것이다. 또한 반박은 주장에 대하여 상충하는 진술이다(Toulmin, 1958). 본 연구에서는 논증패턴 프로파일뿐 아니라 논증의 내용과 논리적 관계를 파악하기 위하여 대안개념을 포함한 경우 별도의 요소로 표시해야 한다고 판단하였다.
모형의 역할은 무엇인가? 모형(model)은 어떤 물체나 현상 또는 아이디어의 속성을 기호, 그림, 다른 사물 등으로 나타낸 설명 체계로 과학에서 활용되는 모형은 구체적인 현상과 추상적인 개념을 연결하는 다리의 역할을 한다. 과학적 모형의 본성과 유용성에 대하여 배우고, 과학적 모형을 구성하며, 구성한 모형을 검증하는 과정에 학생들이 참여하는 것은 과학 교육의 핵심이라고 할 수 있다(Gilbert, Boulter, & Elmer, 2000; Gilbert & Ireton, 2003; Halloun, 2007).
정신 모형이란? 정신 모형(mental model)은 학습자가 사고활동을 전개할 때 의미론적 표상과 시각적 표상을 동원하여 자연 현상을 기초로 현상을 설명하고 예측하기 위해 만든 내적 표상체계이다(Johnson-Laird, 1983). 이러한 정신모형은 특정 시간에 특정 상황에 대한 정지된 이미지와 달리 동영상으로 보는 것과 같은 방식으로 간주되기도 한다(Franco & Colinvaux, 2000).
질의응답 정보가 도움이 되었나요?

참고문헌 (60)

  1. Barnett, M., & Morran, J. (2002). Addressing children's alternative frameworks of the Moon's phases and eclipses. International Journal of Science Education, 24(8), 859-879. 

  2. Berland, L. K., & McNeill, K. L. (2010). A Learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94(5), 765-793. 

  3. Berland, L. K., & Reiser, B. (2009). Making sense of argumentation and explanation, Science Education, 93(1), 26-55. 

  4. Clark, D.B., & Sampson, V. (2008). Assessing dialogic argumentation in online environments to relate structure, grounds and conceptual quality. Journal of Research in Science Teaching, 45(3), 293-321. 

  5. Clement, J. J. (2000). Model-based learning as a key research area of science education. International Journal of Science Education, 22(9), 1041-1053. 

  6. Cohen, E. (1994). Restructuring the classroom: conditions for productive small groups. Review of Educational Research, 64(1), 1-35. 

  7. Coll, R., France, B., & Taylor, I. (2005). The role of models/and analogies in science education: Implications from research. International Journal of Science Education, 27(2), 183-198. 

  8. Crawford, B. A., & Cullin, M. J. (2004). Supporting prospective teachers' conceptions of modelling in science. International Journal of Science Education, 26(11), 1379-1401. 

  9. Driver, R. A., Newton, P., & Osborne, J. (2000). Establishing the norms of argumentation in classrooms. Science Education, 84(3), 287-312. 

  10. Duschl, R.A. (2008). Quality of argumentation and epistemic criteria. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research, (pp.159-175). Dordrecht, the Netherlands: Springer Academic Publishers. 

  11. Duschl, R.A., & Osborne, J., (2002). Supporting and promoting argumentation discourse. Studies in Science Education, 38(1), 39-72. 

  12. Erduran, S. (2008). Methodological foundations in the study of science classroom argumentation. In S. Erduran & M.P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research, (pp. 47-69). Dordrecht, the Netherlands: Springer Academic Publishers. 

  13. Erduran, S., Ardac, D. & Yakmaci-Guzel, B. (2006). Promoting argumentation in pre-service teacher education in Science. Eurasia Journal of Mathematics, Science and Technology Education, 2(2), 1-14. 

  14. Erduran, S., & Osborne, J. (2005). Developing arguments. In, S. Alsop, L. Bencze., & E. Pedretti (Eds.), Analysing exemplary science teaching: Theoretical lenses and a spectrum of possibilities for practice, (pp. 106-115). London, UK: Open University Press. 

  15. Erduran, S., Simon, S., & Osborne, J. (2004). Tapping into argumentation: Developments in the application of Toulmin's argument pattern for studying science discourse. Science Education, 88(6), 915-933. 

  16. Franco, C. & Colinvaux, D. (2000). Grasping mental models. In J. Gilbert and C. Boulter(Eds.), Developing models in science education, (pp. 93-118). New York, NY:Kluwer Academic Publishers. 

  17. Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education, (pp.3-17). New York, NY:Kluwer Academic Publishers. 

  18. Gilbert, J. K., Boulter, C. J., & Rutherford, M. (1998). Models in explanations, part 1: Horses for courses. International Journal of Science Education, 20(1), 83-97. 

  19. Gilbert, S. W., & Ireton, S. W. (2003). Understanding models in earth and space science. Arlington, VA: NSTA Press. 

  20. Gobert, J. (2005). The effects of different learning tasks on model-building in plate tectonics: Diagramming versus explaining. Journal of Geoscience Education, 53(4), 444-455. 

  21. Gobert, J. D. & Clement, J. (1999). Effects of student-generated diagrams versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 36(1), 39-53. 

  22. Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 1-11. 

  23. Halloun, I. (2007). Mediated modeling in science education. Science & Education, 16(7), 665-697. 

  24. Han, H., Lee, T., Ko, H., Lee, S., Kim, E., Choe, S., & Kim, C. (2012). An analysis of the type of rebuttal in argumentation among science-gifted student. Journal of the Korean Association for Science Education, 32(4), 717-728. 

  25. Hogan, K., & Maglenti, M. (2001). Comparing the epistemological underpinning of students' and scientists' reasoning about conclusions. Journal of Research in Science Teaching, 38(6), 668-687. 

  26. Jang, E., Ko, W., & Kang, S. (2012). The analysis of university student's modeling patterns and perceptions through modeling experiments. Journal of the Korean Association for Science Education, 32(1), 1-14 

  27. Jimenez-Aleixandre, M., Rodrigues, A., & Duschl, R. (2000). "Doing the lesson" or "doing science": Argument in high school genetics. Science Education, 84(6), 757-792. 

  28. Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference and consciousness. Cambridge, MA: Harvard University Press. 

  29. Kang, S., Kwak, K., & Nam, J. (2006). The effects of argumentation-based teaching and learning strategy on cognitive development, science concept understanding, science-related attitude, and argumentation in middle school science. Journal of the Korean Association for Science Education, 26(3), 450-461. 

  30. Kang, N., & Lee, E. (2013). Argument and argumentation: A Review ofliterature for clarification of translated words. Journal of the Korean Association for Science Education, 33(6), 1119-1138. 

  31. Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810-824. 

  32. Kuhn, D., & Udell, W. (2003). The development of argument skills. Child Development, 74(5), 1245-1260. 

  33. Lee, H., Cho, H., & Son, J. (2009). The teachers' view on using argumentation in school science. Journal of the Korean Association for Science Education, 29(6), 666-679. 

  34. Lehrer, R., & Schauble, L. (2006). Scientific thinking and scientific literacy: Supporting developmentin learning in context. In W. Damon, R. M. Lerner, K. A. Renninger, & I. E. Sigel (Eds.), Handbook of child psychology, (pp. 153-196). Hoboken, NJ: John Wiley & Sons. 

  35. Libarkin, J. C., Anderson, S., Dahl, J., Beilfuss, M., & Boone, W. (2005). Qualitative analysis of college students' ideas about the earth: Interviews and open-ended questionnaires. Journal of Geoscience Education, 53(1), 17-26. 

  36. Maeng, S., Park, Y., & Kim, C. (2013). Methodological review of the research on argumentative discourse focused on analyzing collaborative construction and epistemic enactments of argumentation. Journal of the Korean Association for Science Education, 31(5), 733-744. 

  37. Oh, P., & Oh, S. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. 

  38. Osborne, J.F., Erduran, S., & Simon, S. (2004). Enhancing the quality of argument in school science. Journal of Research in Science Teaching, 41(10), 994-1020. 

  39. Osborne, J.F., Erduran, S., Simon, S., & Monk, M. (2001). Enhancing the quality of argument in school science. School Science Review, 82(1), 63-70. 

  40. Park, S. (2009). An analysis of high school students' mental models on the plate boundaries. Journal of Korean Earth Science Society, 30(1), 111-126. 

  41. Park, S. (2011). An analysis of the mental models of middle school students with different learning style on plate tectonics. Journal of the Korean Association for Science Education, 31(5), 733-744. 

  42. Park, S. (2013). The relationship between students' perception of the scientific models and their alternative conceptions of the lunar phases. Eurasia Journal of Mathematics, Science and Technology Education, 9(3), 285-298. 

  43. Park, S., & Oh, J. (2013). Learners' ontological categories according to their mental models of plate boundaries. Journal of Turkish Science Education, 10(2), 17-34. 

  44. Romberg, T., Carpenter, T., & Kwako, J. (2005). Standards based reform and teaching for understanding. In T. Romberg, T. Carpenter, & F. Dremock (Eds.), Understanding mathematics and science matters, (pp.3-26). Mahwah, NJ: Lawrence Erlbaum Associates. 

  45. Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513-536. 

  46. Samarapungavan, A., Vosniadou, S., & Brewer, W. F. (1996). Mental models of the Earth, Sun, and Moon: Indian children's cosmologies. Cognitive Development, 11(5), 491-521. 

  47. Sampson, V., & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447-472. 

  48. Sandoval, W. A., & Millwood, K. A. (2005). The quality of students' use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55. 

  49. Schwarz, C. (2009). Developing preservice elementary teachers' knowledge and practices through modeling-centered scientific inquiry. Science Education, 93(4), 720-744. 

  50. Schwarz, C., Reiser, B. J., Davis, E. A., Keynon, L., Acher, A., Fortus, D., Schwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. 

  51. Shin, H., & Kim, H. (2011). Students' view on argumentation and the aspects of the argumentation in problem-solving type experiment. Journal of the Korean Association for Science Education, 31(4), 567-586. 

  52. Shin, H., & Kim, H. (2012). Development of the analytic framework for dialogic argumentation using the TAP and a diagram in the context of learning the circular motion. Journal of the Korean Association for Science Education, 32(5), 1007-1026. 

  53. Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2), 235-260. 

  54. Toulmin, S. (1958). The uses of argument. Cambridge, UK: Cambridge University Press. 

  55. Vosniadou, S. (1999). Conceptual change research; State of the art and future direction. In W. Schnotz, S. Vosniadou, and M. Carretero(Eds.), New perspectives on conceptual change, (pp. 3-13). New York, NY:Kluwer Academic Publishers. 

  56. Walton, D.N. (1996). Argumentation schemes for presumptive reasoning. Mahwah, NJ: Lawrence Erlbaum Associates. 

  57. Watson, J., Swain, J. R., & Mcrobbie, C. (2004). Students'discussions in practical scientific inquiries. International Journal of Science Education, 26(1), 25-45. 

  58. Yore, L.D., & Treagust, D.F. (2006). Current realities and future possibilities: Language and science literacy-empowering research and informing instruction. International Journal of Science Education, 28(2), 291-314. 

  59. Yun, S., & Kim H. (2011), Development and application of the scientific inquiry tasks for small group argumentation. Journal of the Korean Association for Science Education, 31(5), 694-708. 

  60. Zohar, A., & Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로