$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

암모니아를 환원제로 이용한 NOx 저감 촉매 기술
Catalytic Technology for NOx Abatement using Ammonia 원문보기

청정기술 = Clean technology, v.22 no.4, 2016년, pp.211 - 224  

박순희 (고려대학교 초저에너지 초저배출 자동차 사업단) ,  이관영 (고려대학교 화공생명공학과) ,  조성준 (전남대학교 화학공학부)

초록
AI-Helper 아이콘AI-Helper

가솔린 자동차의 내연기관 배기가스 처리를 위한 촉매로 삼원촉매가 널리 사용되고 있다. 반면 디젤 자동차의 배출 오염 물질 처리를 위해서는 다양한 기술들이 연구개발되고 있다. 디젤 자동차의 특징인 희박연소 조건에서 발생하는 질소산화물의 저감과 제거를 위해 티타니아에 담지된 바나듐 촉매가 상용화되어 있다. 바나듐 촉매를 이용한 질소산화물 저감기술은 암모니아를 환원제로 이용함으로써 대형 디젤 차량에 효과적으로 적용할 수 있다. 최근 활발하게 연구개발이 이루어지고 있는 구리가 이온 교환된 제올라이트 촉매는 초고연비 자동차 개발의 필수 기술로 인식되고 있다. 본 총설에서는 디젤 엔진의 배기가스 중 질소산화물을 효과적으로 제거하기 위한 후처리 기술 중 하나인 암모니아를 이용한 선택적 촉매 환원 반응의 촉매로 사용되는 구리가 이온 교환된 제올라이트 촉매와 관련한 최근 연구개발 동향을 소개하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Three way catalyst has been used extensively for the exhaust gas treatment for the internal combustion gasoline engine. While, numerous research efforts have been directed to develop various technologies for the abatement of exhaust gas from diesel engine. Diesel engine operating under lean conditio...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
디젤 엔진은 가솔린 엔진과 같이 삼원촉매를 이용하여 NOx를 제거하는 것이 어려운 이유는? 삼원촉매를 이용하여 배기가스 내 CO, HC, NOx를 서로 산화-환원시켜 효과적으로 제거하는 가솔린 엔진과 달리 산소과잉 조건에서 운전하는 디젤 엔진은 NOx를 제거하기 어렵다[2]. 차세대 엔진의 구조 개선, 배기가스 재순환장치(exhaust gas recirculation, EGR)의 도입 등으로 디젤 엔진 배기가스의 온도가 낮아지고 NOx의 배출량 역시 크게 감소하였지만, 이런 방법으로는 더욱 엄격해진 환경 규제를 만족할 수준까지 낮추기가 어려워 배기가스 내 NOx를 제거하기 위해 촉매를 사용하는 후처리 기술이 활발히 연구되고 있다.
자동차에서 발생하는 유해한 배기가스 성분은 어떤 것이 있는가? 자동차에서 발생하는 유해한 배기가스 성분은 일산화탄소(CO), 탄화수소(HC), 질소산화물(NOx) 등이 있다. 이 중에서 질소산화물은 자동차에서 배출되는 대표적인 유해물질로 산성비나 스모그 등과 같은 환경오염문제를 야기할 수 있는 주요 원인 중 하나로 알려져 있다.
EGR의 한계점은? EGR은 연소온도를 낮추어 질소산화물(NOx)의 발생량을 줄이기 때문에 연소실로 재순환되는 배기가스의 온도를 낮추어주기 위해 냉각기(EGR Cooler)를 장착하면 효과가 더욱 커진다[3]. 반면 입자상물질(particulate matter, PM) 발생량은 증가하고 혼합기의 착화성이 불량하게 되어 기관의 출력을 감소시키는 단점이 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (82)

  1. http://www.dieselnet.com/standards (accessed Nov. 2016). 

  2. Papadakis, V. G., Pliangos, C. A., Yentekakis, I. V., Verykios, X. E., and Vayenas, C. G., "Development of High Performance, Pd-Based, Three Way Catalysts," Catal. Today, 29, 71-75 (1996). 

  3. Storey, J. M. E., Sluder, C. S., Lance, M. J., Styles, D., and Simko, S., "Exhaust Gas Recirculation Cooler Fouling in Diesel Applications: Fundamental Studies, Deposit Properties and Microstructure," Proceedings of International Conference on Heat Exchanger Fouling and Cleaning, Crete Island, Greece (June 2011). 

  4. Takahashi, N., Shinjoh, H., Iijima, T., Suzuki, T., Yamazaki, K., Yokota, K., Suzuki, H., Miyoshi, N., Matsumoto, S., Tanizawa, T., Tanaka, T., Tateishi, S.-S., and Kasahara, K., "The New Concept 3-Way Catalyst for Automotive Lean- Burn Engine: $NO_x$ Storage and Reduction Catalyst," Catal. Today, 27, 63-69 (1996). 

  5. Elbouazzaoui, S., Corbos, E. C., Courtois, X., Marecot, P., and Duprez, D., "A Study of the Deactivation by Sulfur and Regeneration of a Model NSR $Pt/Ba/Al_2O_3$ Catalyst," Appl. Catal. B: Environ., 61, 236-243 (2005). 

  6. Yang, M., Li, Y., Wang, J., and Shen, M., "NOx Removal Efficiency and Ammonia Selectivity During the NOx Storage-Reduction Process over Pt/BaO (Fe, Mn, Ce)/ $Al_2O_3$ Model Catalysts. Part II: Influence of Ce and Mn-Ce Addition," Appl. Catal. B: Environ., 102, 362-371 (2011). 

  7. Takeuchi, M., and Matsumoto, S., "NOx Storage-Reduction Catalysts for Gasoline Engines," Top. Catal., 28, 1-4 (2004). 

  8. Chaugule, S. S., Yezerets, A., Currier, N. W., Ribeiro, F. H., and Delgass, W. N., "'Fast' NOx Storage on $Pt/BaO/{\gamma}-Al_2O_3$ Lean NOx Traps with $NO_2\;+\;O_2\;and\;NO\;+\;O_2$ : Effects of Pt, Ba Loading," Catal. Today, 151, 291-303 (2010). 

  9. Elbouazzaoui, S., Corbos, E. C., Courtois, X., Marecot, P., and Duprez, D., "A Study of the Deactivation by Sulfur and Regeneration of a Model NSR $Pt/Ba/Al_2O_3$ Catalyst," Appl. Catal. B: Environ., 61, 236-243 (2005). 

  10. Luo, J.-Y., Kisinger, D., Abedi, A., and Epling, W. S., "Sulfur Release from a Model $Pt/Al_2O_3$ Diesel Oxidation Catalyst: Temperature-Programmed and Step-Response Techniques Characterization," Appl. Catal. A: General, 383, 182-191 (2010). 

  11. Park, S. M., "Selective Catalytic Reduction of Nitrogen Oxides Promoted by Storage Function," Ph.D. Dissertation, Chonnam National University, Gwangju (2010). 

  12. Burch, R., Breen, J. P., and Meunier, F. C., "A Review of the Selective Reduction of NOx with Hydrocarbon under Lean-Burn Conditions with Non-Zeolitic Oxide and Platinum Metal Catalysts," Appl. Catal. B: Environ, 39, 283-303 (2002). 

  13. Kaspar, J., Fornasiero, P., and Hickey, N., "Automotive Catalytic Converters: Current Status and Some Perspectives," Catal. Today, 77, 419-449 (2003). 

  14. Komvokis, V. G., Iliopoulou, E. F., Vasalos, I. A., Triantafyllidis, K. S., and Marshall, C. L., "Development of Optimized Cu- ZSM-5 DeNOx Catalytic Materials both for HC-SCR Applications and as FCC Catalytic Additives," Appl. Catal. A: Gen., 325, 345-352 (2007). 

  15. Shichi, A., Katagi, K., Satsuma, A., and Hattori, T., "Influence of Intracrystalline Diffusion on the Selective Catalytic Reduction of NO by Hydrocarbon over Cu-MFI Zeolite," Appl. Catal. B: Environ., 24, 97-105 (2000). 

  16. Shichi, A., Statsuma, A., and Hattori, T., "Influence of Hydrocarbon Molecular Size on the Selective Catalytic Reduction of NO by Hydrocarbon over Cu-MFI Zeolite," Appl. Catal. A: Gen., 207, 315-321 (2001). 

  17. Liu, Z., and Woo, S. I., Recent Advances in Catalytic $DeNO_x$ Science and Technology, Catal. Rev., 48(1), 43-89 (2006). 

  18. Parvulescu, V. I., Grange, P., and Delmon, B., "Catalytic Removal of NO," Catal. Today, 46, 233-316 (1998). 

  19. Grossale, A., Nova, I., and Tronconi, E., "Study of a Fezeolite-based System as $NH_3$ -SCR Catalyst for Diesel Exhaust Aftertreatment," Catal. Today, 136, 18-27 (2008). 

  20. Nova, I., Ciardelli, C., Tronconi, E., Chatterjee, D., and Weibel, M., " $NH_3-NO/NO_2$ SCR for Diesel Exhausts after Treatment: Mechanism and Modelling of a Catalytic Converter," Top. Catal., 42-43, 43-46 (2007). 

  21. Grossale, A., Nova, I., and Tronconi, E., "Study of a Fe-zeolitebased System as $NH_3$ -SCR Catalyst for Diesel Exhaust Aftertreatment," Catal. Today, 136, 18-27 (2008). 

  22. Schuler, A., Votsmeier, M., Kiwic, P., Gieshoff, J., Hautpmannb, W., Drochner, A., and Vogel, H., " $NH_3$ -SCR on Fe Zeolite Catalysts-From Model Setup to $NH_3$ Dosing," Chem. Eng. J., 154, 333-340 (2009). 

  23. Chen, L., Li, J., Gea, M., and Zhu, R. "Enhanced Activity of Tungsten Modified $CeO_2/TiO_2$ for Selective Catalytic Reduction of NOx with Ammonia," Catal. Today, 153, 77-83 (2010). 

  24. Kim, M. H., "Performance Management of a DeNOx System for Stationary Sources and Regeneration Strategies of DeNOx Catalysts," Clean Technol., 22(3), 141-153 (2016). 

  25. Yates, M., Martin, J. A., Martin-Luengo, M. A., Suarez, S., and Blanco, J., " $N_2O$ Formation in the Ammonia Oxidation and in the SCR Process with $V_2O_5-WO_3$ Catalysts," Catal. Today, 107-108, 120-125 (2005). 

  26. Choo, S. T., Yim, S. D., Nam, I.-S., Ham, S.-W., and Lee, J.-B., "Effect of Promoters Including $WO_3$ and BaO on the Activity and Durability of $V_2O_5$ /sulfated $TiO_2$ Catalyst for NO Reduction by $NH_3$ ," Appl. Catal. B: Environ., 44, 237-252 (2003). 

  27. Seo, C.-K., and Chio, B. C., "Physicochemical Characteristics According to Aging of Fe-Zeolite and $V_2O_5-WO_3-TiO_2$ SCR for Diesel Engines," J. Ind. Eng. Chem., 25, 239-249 (2015). 

  28. Shan, W., Liu, F., He, H., Shi, X., and Zhang, C., "A Superior Ce-W-Ti Mixed Oxide Catalyst for the Selective Catalytic Reduction of NOx with $NH_3$ ," Appl. Catal. B: Environ., 115-116, 100-106 (2012). 

  29. Lietti, L., Nova, I., Ramis, G., Acqua, L. D., Busca, G., Giamello, E., Forzatti, P., and Bregani, F., "Characterization and Reactivity of $V_2O_5-MoO_3-TiO_2$ De-NOx SCR Catalysts," J. Catal., 187, 419-435 (1999). 

  30. Chen, L., Li, J., and Ge, M., "Promotional Effect of Ce-doped $V_2O_5-WO_3/TiO_2$ with Low Vanadium Loadings for Selective Catalytic Reduction of NOx by $NH_3$ ," J. Phys. Chem. C, 113, 21177-21184 (2009). 

  31. Wang, Z., Li, X., Song, W., Chen, J., Li, T., and Feng, A., "Synergetic Promotional Effects Between Cerium Oxides and Manganese Oxides for $NH_3$ -Selective Catalyst Reduction Over Ce-Mn/ $TiO_2$ ," Mater. Express, 1(2), 167-175 (2011). 

  32. Nova, I., Acqua, L., Lietti, L., Giamello, E., and Forzatti, P., "Study of Thermal Deactivation of a De-NOx Commercial Catalyst," Appl. Catal. B: Environ., 35, 31-42 (2001). 

  33. Saleh, R. Y., Wachs, I. E., Chan, S. S., and Chersich, C. C., "The Interaction of $V_2O_5\;with\;TiO_2$ (Anatase): Catalyst Evolution with Calcination Temperature and O-Xylene Oxidation," J. Catal., 98, 102-114 (1986). 

  34. Oliveri, G., Ramls, G., Busca, G., and Escribano, V. S., "Thermal Stability of Vanadia-Titania Catalysts," J. Mater. Chem., 3(12), 1239-1249 (1993). 

  35. Madia, G., Elsener, M., Koebel, M., Raimondi, F., and Wokaun, A., "Thermal Stability of Vanadia-tungsta-titania Catalysts in the SCR Process," Appl. Catal. B: Environ., 39, 181-190 (2002). 

  36. Smirniotis, P. G., Sreekanth, P. M., Pena, D. A., and Jenkins, R. G., "Manganese Oxide Catalysts Supported on $TiO_2,\;Al_2O_3,\;and\;SiO_2$ : A Comparison for Low-Temperature SCR of NO with $NH_3$ ," Ind. Eng. Chem. Res., 45, 6436-6443 (2006). 

  37. Li, Y., Cheng, H., Li, D., Qin, Y., Xei, Y., and Wang, S., " $WO_3/CeO_2-ZrO_2$ , a Promising Catalyst for Selective Catalytic Reduction (SCR) of NOx with $NH_3$ in Diesel Exhaust," Chem. Commun., 1470-1472 (2008). 

  38. Qi, G., and Yang, R. T., "Performance and Kinetics Study for Low-temperature SCR of NO with $NH_3$ over MnOx- $CeO_2$ Catalyst," J. Catal., 217, 434-441 (2003). 

  39. Nie, J., Wu, X., Ma, Z., Xu, T., Si, Z., Chen, L., and Weng, D., "Tailored Temperature Window of MnOx- $CeO_2$ SCR Catalyst by Addition of Acidic Metal Oxides," Chin. J. Catal., 35, 1281-1288 (2014). 

  40. Peng, Y., Li, K., and Li, J., "Identification of the Active Sites on $CeO_2-WO_3$ Catalysts for SCR of NOx with NH3: An in situ IR and Raman Spectroscopy Study," Appl. Catal. B: Environ., 140-141, 483-492 (2013). 

  41. Lee, S. G., Lee, H. J., Song, I. H., Youn, S. H., Kim, D. H., and Cho, S. J., "Suppressed $N_2O$ Formation During $NH_3$ Selective Catalytic Reduction Using Vanadium on Zeolitic Microporous $TiO_2$ ," Sci. Rep. doi: 10.1038/srep12702. 

  42. Iwamoto, M., Yahiro, H., Tanda, K., Mizuno, N., Mine, Y., and Kagawa, S., "Removal of Nitrogen Monoxide through a Novel Catalytic Process. 1. Decomposition on Excessively Copper Ion Exchanged ZSM-5 Zeolites," J. Phys. Chem., 95, 3727-3730 (1991). 

  43. Centi, G., and Perathoner, S., "Nature of Active Species in Copper-Based Catalysts and Their Chemistry of Transformation of Nitrogen Oxides," Appl. Catal. A: Gen., 132, 179-259 (1995). 

  44. Tolonen, K. R., Maunula, T., Lomma, M., Huuhtanen, M., and Keiski, R. L., "The Effect of $N_2O$ on the Activity of Fresh and Aged zeolite Catalysts in the $NH_3$ -SCR Reaction," Catal. Today, 100, 217-222 (2005). 

  45. Kwak, J. H., Tonkyn, R. G., Kim, D. H., Szanyi, J., and Peden, C. H. F., "Excellent Activity and Selectivity of Cu-SSZ-13 in the Selective Catalytic Reduction of NOx with $NH_3$ ," J. Catal., 275, 187-190 (2010). 

  46. Fickel, D. F., Addio, E. D., Lauterbach, J. A., and Lobo, R. F., "The Ammonia Selective Catalytic Reduction Activity of Copper-Exchanged Small-Pore Zeolites," Appl. Catal. B: Environ., 102, 441-448 (2011). 

  47. Shwan, S., Nedyalkova, R., Jansson, J., Korsgren, J., Olsson, L., Skoglundh, M., "Hydrothermal Stability of Fe-BEA as an $NH_3$ -SCR Catalyst," Ind. Eng. Chem. Res., 51, 12762-12772 (2012). 

  48. Colombo, M., Nova, I., Tronconi, E., SchmeiBer, V., Konrad, B. B., and Zimmermann, L., " $NO/NO_2/N_2O-NH_3$ SCR Reactions over a Commercial Fe-Zeolite Catalyst for Diesel Exhaust Aftertreatment: Intrinsic Kinetics and Monolith Converter Modelling," Appl. Catal. B: Environ., 111-112, 106-118 (2012). 

  49. Frey, A. M., Mert, S., Due-Hansen, J., Fehrmann, R., and Christensen, C. H., "Fe-BEA Zeolite Catalysts for $NH_3$ -SCR of NOx," Catal. Lett., 130, 1-8 (2009). 

  50. Ha, H.-J., Hong, J.-H., Choi, J.-H., and Han, J.-D., "Selective Catalytic Reduction of NOx with Ammonia over Cu and Fe Promoted Zeolite Catalysts," Clean Technol., 19(3), 287-294 (2013). 

  51. Long, R. Q., and Yang, R. T., "Selective Catalytic Reduction of NO with Ammonia over $Fe^{3+}$ -Exchanged Mordenite (Fe-MOR): Catalytic Performance, Characterization, and Mechanistic Study," J. Catal., 207, 274-285 (2002). 

  52. Lee, J., Paratore, M., and Brown, D., "Evaluation of Cu-Based SCR/DPF Technology for Diesel Exhaust Emission Control," SAE Int. J. Fuels Lubr., 1(1), 96-101 (2009). 

  53. Kwak, J. H., Tran, D., Burton, S. D., Szanyi, J., Lee, J. H., and Peden, C. H. F., "Effects of Hydrothermal Aging on $NH_3$ -SCR Reaction over Cu/zeolites," J. Catal., 287, 203-209 (2012). 

  54. Cavataio, G., Jen, H., Warner, J., and Girard, J., "Enhanced Durability of a Cu/Zeolite Based SCR Catalyst," SAE Int. J. Fuels Lubr., 1(1), 477-487 (2009). 

  55. Bull, I., Boorse, R. S., Jaglowski, W. M., Koermer, G. S., Moini, A., Patchett, J. A., Xue, W. M., Burk, P., Dettling, J. C., and Caudle, M. T., "Copper CHA Zeolite Catalysts," U.S. Patent No. 0,226,545 (2008). 

  56. Andersen, P. J., Collier, J. E., Casci, J. L., Chen, H.-Y., Fedeyko, J. M., Foo, R. K. S., and Rajaram, R. R., "SCR Method and System Using Cu/SAPO-34 Zeolite Catalyst," E.P. No. 2,150,328B1 (2008). 

  57. Zones, S. I., "Zeolite SSZ-13 and its Method of Preparation," U.S. Patent No. 4,544,538 (1985). 

  58. Wu, L., and Hensen, E. J. M., "Comparison of Mesoporous SSZ-13 and SAPO-34 Zeolite Catalysts for the Methanol-to-Olefins Reaction," Catal. Today, 235, 160-168 (2014). 

  59. Ma, L., Cheng, Y., Cavataio, G., McCabe, R. W., Fu, L., and Li, J., "Characterization of Commercial Cu-SSZ-13 and Cu-SAPO-34 Catalysts with Hydrothermal Treatment for $NH_3$ -SCR of NOx in Diesel Exhaust," Chem. Eng. J., 225, 323-330 (2013). 

  60. Deimund, M. A., Harrison, L., Lunn, J. D., Liu, Y., Malek, A., Shayib, R., and Davis, M. E., "Effect of Heteroatom Concentration in SSZ-13 on the Methanol-to-Olefins Reaction," ACS Catal., 6, 542-550 (2016). 

  61. Moliner, M., Franch, C., Palomares, E., Grill, M., and Corma, A., "Cu-SSZ-39, an Active and Hydrothermally Stable Catalyst for the Selective Catalytic Reduction of NOx," Chem. Commun., 48, 8264-8266 (2012). 

  62. Baik, J. H., Yim, S. D., Nam, I.-S., Mok, Y. S., Lee, J.-H., Cho, B. K., and Oh, S. H., "Control of NOx Emissions from Diesel Engine by Selective Catalytic Reduction (SCR) with Urea," Top. Catal., 30/31, 1-4 (2004). 

  63. Jo, D., Ryu, T., Park, G. T., Kim, P. S., Kim, C. H., Nam, I.-S., and Hong, S. B., "Synthesis of High-Silica LTA and UFI Zeolites and $NH_3$ -SCR Performance of Their Copper-Exchanged Form," ACS Catal., 6, 2443-2447 (2016). 

  64. Kwak, J. H., Tran, D., Szanyi, J., Peden, C. H. F., and Lee, J. H., "The Effect of Copper Loading on the Selective Catalytic Reduction of Nitric Oxide by Ammonia Over Cu-SSZ-13," Catal. Lett., 142, 295-301 (2012). 

  65. Fickel, D. W., and Lobo, R. F., "Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD," J. Phys. Chem. C, 114, 1633-1640 (2010). 

  66. Deka, U., Juhin, A., Eilertsen, E. A., Emerich, H., Green, M. A., Korhonen, S. T., Weckhuysen, B. M., and Beale, A. M., "Confirmation of Isolated $Cu^{2+}$ Ions in SSZ-13 Zeolite as Active Sites in $NH_3$ -Selective Catalytic Reduction," J. Phys. Chem. C, 116, 4809-4818 (2012). 

  67. Gao, F., Kwak, J. H., Szanyi, J., and Peden, C. H. F., "Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts," Top. Catal., 56, 1441-1459 (2013). 

  68. Moliner, M., Martinez, C., and Corma, A., "Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis," Chem. Mater., 26, 246-258 (2014). 

  69. Barrer, R. M., "Zeolites and Their Synthesis," Zeolites, 1, 130-140 (1981). 

  70. Zones, S. I., and Nordstrand, R. A., "Further Studies on the Conversion of Cubic P Zeolite to High Silica Organozeolites," Zeolites, 8, 409-415 (1988). 

  71. Lobo, R. F., "Synthesis and Rietveld Refinement of the Small-Pore Zeolite SSZ-16," Chem. Mater., 8, 2409-2411 (1996). 

  72. Lewis, G. J., Miller, M. A, Moscoso, J. G., Wilson, B. A., Knight, L. M., and Wilson, S. T., "Experimental Charge Density Matching Approach to Zeolite Synthesis," Stud. Surf. Sci. Catal., 154, 364-372 (2004). 

  73. Blackwell, C. S., Broach, R. W., Gatter, M. G., Holmgren, J. S., Jan, D. Y., Lewis, G. J., Mezza, B. J., Mezza, T. M., Miller, M. A., Moscoso, J. G., Patton, R. L., Rohde, L. M., Schoonover, M. W., Sinkler, W., Wilson, B. A., and Wilson, S. T., "Open-Framework Materials Synthesized in the $TMA^{+]/TEA^{+}$ Mixed-Template System: The New Low Si/Al Ratio Zeolites UZM-4 and UZM-5," Angew. Chem. Int. Ed., 42, 1737-1740 (2003). 

  74. Miller, M. A., Moscoso, J. G., Koster, S., Gatter, M. G., and Lewis, G. J., "Synthesis and Characterization of the 12-Ring Zeolites UZM-4 (BPH) and UZM-22 (MEI) via the Charge Density Mismatch Approach in the Choline- $Li_2O-SrO-Al_2O_3-SiO_2$ System," Stud. Surf. Sci. Catal., 170, 347-354 (2007). 

  75. Kerr, G. T., "Chemistry of Crystalline Aluminosilicates. 11. The Synthesis and Properties of Zeolite ZK-4," Inorg. Chem., 5, 1537-1539 (1966). 

  76. Chen, B. Xu, R., Zhang, R., and Liu, N., "Economical Way to Synthesize SSZ-13 with Abundant Ion-Exchanged $Cu^{+}$ for an Extraordinary Performance in Selective Catalytic Reduction (SCR) of NOx by Ammonia," Environ. Sci. Technol., 48, 13909-13916 (2014). 

  77. Itakura, M., Goto, I., Takahashi, A., Fujitani, T., Ide, Y., Sadakane, M., and Sano, T., "Synthesis of High-Silica CHA Type Zeolite by Interzeolite Conversion of FAU Type Zeolite in the Presence of Seed Crystals," Micropor. Mesopor. Mater., 144, 91-96 (2011). 

  78. Zones, S. I., "Conversion of Faujasites to High-Silica Chabazite SSZ-13 in the Presence of N,N,N-Trimethyl-l-Adamantammonium Iodide," J. Chem. Soc. Faraday Trans., 87(22), 3709-3716 (1991). 

  79. Zones, S. I., and Nordstrand, R. A., "Novel Zeolite Transformations: The Template-Mediated Conversion of Cubic P Zeolite to SSZ-13," Zeolites, 8, (1988). 

  80. Ren, L., Zhu, L., Yang, C., Chen, Y., Sun, Q., Zhang, H., Li, C., Nawaz, F., Meng, X., and Xiao, F.-S., "Designed Copper-Amine Complex as an Efficient Template for One-Pot Synthesis of Cu-SSZ-13 Zeolite with Excellent Activity for Selective Catalytic Reduction of NOx by $NH_3$ ," Chem. Commun., 47, 9789-9791 (2011). 

  81. Xie, L., Liu, F., Ren, L., Shi, X., Xiao, F.-S., and He, H., "Excellent Performance of One-Pot Synthesized Cu-SSZ-13 Catalyst for the Selective Catalytic Reduction of NOx with $NH_3$ ," Environ. Sci. Technol., 48, 566-572 (2014). 

  82. Wu, L., Degirmenci, V. D., Magusin, P. C. M. M,, Szyja B. M., and Hensen, E. J. M. "Dual Template Synthesis of a Highly Mesoporous SSZ-13 Zeolite with Improved Stability in the Methanol-to-Olefins Reaction," Chem. Commun., 48, 9492-9494 (2012). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로