$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

RAW264.7 대식세포에서 LPS 매개 iNOS/NO 생성에 대한 protopanaxadiol saponin 및 protopanaxatriol saponin의 억제효과
Prototypes of Panaxadiol and Panaxatriol Saponins Suppress LPS-mediated iNOS/NO Production in RAW264.7 Murine Macrophage Cells 원문보기

생명과학회지 = Journal of life science, v.26 no.12 = no.200, 2016년, pp.1422 - 1430  

김진익 (창원대학교 생명보건학부) ,  난딘셋세그 나르나투야 (창원대학교 생명보건학부) ,  최용원 (창원대학교 생명보건학부) ,  강대욱 (창원대학교 생명보건학부) ,  김동완 (창원대학교 생명보건학부) ,  이경 (창원대학교 생명보건학부) ,  고성룡 (고려인삼학회 사무국) ,  문자영 (창원대학교 생명보건학부)

초록
AI-Helper 아이콘AI-Helper

본 연구는 RAW264.7 세포에서 lipopolysaccharide (LPS) 처리에 의한 염증매개인자의 유도에 대한 고려인삼 사포닌 분획인 20(S)-protopanaxadiol saponins (PDS)과 20(S)-protopanaxatriol saponins (PTS)의 조절효능을 탐구하였다. 이를 위해 RAW264.7 세포에 PDS 또는 PTS를 $150{\mu}g/ml$의 농도로 LPS ($10{\mu}g/ml$ 처리 이전이나 처리 이후 또는 LPS와 동시에 처리하였으며, 처리된 세포에서 nitric oxide (NO)의 방출량, 유도성 nitric oxide synthase (iNOS) 및 cyclooxygenase-2 (COX-2)의 발현 량을 분석하였다. PDS에 비하여 PTS는 RAW264.7 세포에 LPS와 동시에 처리하여 24시간 동안 배양했을 때 LPS 처리에 의해 유도된 NO의 생성을 강하게 감소시켰다. RAW264.7 세포에 LPS ($10{\mu}g/ml$를 2시간 동안 처리한 후에 PDS 또는 PTS를 $150{\mu}g/ml$ 농도로 24시간 동안 처리하면 두 인삼 사포닌 성분 모두 NO의 생성을 강하게 감소시켰다. RAW264.7 세포에 PDS 또는 PTS를 $150{\mu}g/ml$ 농도로 2시간 동안 처리한 후에 LPS ($10{\mu}g/ml$를 24시간 동안 처리했을 경우에도 두 인삼 사포닌 성분 모두 LPS 처리에 의해 유도된 NO 생성을 강하게 감소시켰다. LPS 처리에 의한 NO 생성을 저해하는 효과는 PDS에 비하여 PTS가 더 강하게 나타났다. PDS와 PTS 모두 $150{\mu}g/ml$ 처리농도에서 LPS ($10{\mu}g/ml$처리에 의해 유도된 iNOS와 COX-2의 발현 역시 상당히 감소시켰다. 따라서 본 연구의 결과는 RAW264.7 대식세포에서 PDS와 PTS 두 인삼 사포닌 성분은 LPS 처리에 의한 염증활성화에 강한 억제효과를 가지고 있음을 의미하며, 전염증성 효소인 iNOS와 COX-2 발현의 감소조절을 통하여 NO의 생성을 억제함으로써 항 염증효과가 나타남을 제시한다.

Abstract AI-Helper 아이콘AI-Helper

This study was performed to investigate the modulatory effects of two prototypes of Panax ginseng saponin fractions, 20(S)-protopanaxadiol saponins (PDS) and 20(S)-protopanaxatriol saponins (PTS), on the induction of inflammatory mediators in lipopolysaccharide (LPS)-treated RAW264.7 murine macropha...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this study, we evaluated the inhibitory effects of two Panax ginseng saponins, PDS and PTS, on the production of inflammatory mediators including nitric oxide and on the expressions of iNOS and COX-2 in LPS-stimulated RAW 264.7 murine macrophage cells. We found that both PDS and PTS inhibited LPS-induced NO generation accompanied by a reduction of iNOS level in RAW264.
  • To investigate the anti-inflammatory effects of PDS or PTS, RAW264.7 cells were treated with LPS (10 μg/ml) for 2 hr or 24 hr before, after or even simultaneous treatment with PDS or PTS, and the level of NO production was evaluated.

대상 데이터

  • 7 cells were purchased from the Korean Cell Line Bank (Seoul, Korea). LPS (Escherichia coli, serotype O55:B5) was purchased from Sigma-Aldrich (St. Louis, MO, USA) and was used to induce an inflammatory response. Anti-iNOS mouse monoclonal, anti-COX-2 goat polyclonal and anti-β-actin mouse monoclonal antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
  • Final concentrations of PDS and PTS used for experiments were prepared by diluting the stock solution with DMEM immediately before use. RAW264.7 cells were purchased from the Korean Cell Line Bank (Seoul, Korea). LPS (Escherichia coli, serotype O55:B5) was purchased from Sigma-Aldrich (St.

데이터처리

  • Monoclonal sheep anti-mouse IgG, or donkey anti-goat IgG horseradish peroxidase-conjugated secondary antibodies were used at 1:2,000 dilutions in TBST. Images were pictured using the Amersham Imager 600 (GE Healthcare Life Sciences) and densitometric data were calculated using the analysis program provided by the Amersham Imager 600.
  • Student’s t-test and a one-way ANOVA were used to determine the statistical significance of the difference between values for the various experimental and control groups.
본문요약 정보가 도움이 되었나요?

참고문헌 (30)

  1. Byeon, S. E., Lee, J., Kim, J. H., Yang, W. S., Kwak, Y. S., Kim, S. Y., Choung, E. S., Rhee, M. H. and Cho, J. Y. 2012. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean red ginseng. Mediators Inflamm. 2012, 732860. 

  2. Cario, E. and Podolsky, D. K. 2000. Differential alteration in intestinal epithelial cell expressionof toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68, 7010-7017. 

  3. Chu, S. F. and Zhang, J. T. 2009. New achievements in ginseng research and its future prospects. Chin. J. Integr. Med. 15, 403-408. 

  4. Cuzzocrea, S. and Salvemini, D. 2007. Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int. 71, 290-297. 

  5. Friedl, R., Moeslinger, T., Kopp, B. and Spieckermann, P. G. 2001. Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW264.7 cells. Brit. J. Pharmacol. 134, 1663-1670. 

  6. Hasegawa, H. 2004. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J. Pharmacol. Sci. 95,153-157. 

  7. Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T. and Takeda, Y. et al. 1999. Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the LPS gene product. J. Immunol. 162, 3749-3752. 

  8. Hui, D. Y. 2008. Intimal hyperplasia in murine models. Curr. Drug Targets 9, 251-260. 

  9. Ichikawaa, T., Li, J., Nagarkatti, P., Nagarkatti, M., Hofsethc, L. J., Windust, A. and Cui, T. 2009. American ginseng preferentially suppresses STAT/iNOS signaling in activated macrophages. J. Ethnopharmacol. 125, 145-150. 

  10. Jeong, H. G., Pokharel, Y. R., Han, E. H. and Kang, K. W. 2007. Induction of cyclooxygenase-2 by ginsenoside Rd via activation of CCAAT-enhancer binding proteins and cyclic AMP response binding protein. Biochem. Biophys. Res. Commun. 359, 51-56. 

  11. Kim, D. H. 2012. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J. Ginseng Res. 36, 1-15. 

  12. Kim, H. S. and Moon, E. Y. 2009. Reactive oxygen species-induced expression of B cell activating factor (BAFF) is independent of Toll-like receptor 4 and myeloid differentiation primary response gene 88. Biomol. Ther. 17, 144-150. 

  13. Kim, T. W., Joh, E. H., Kim, B. and Kim, D. H. 2012. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int. Immunopharmacol. 12, 110-116. 

  14. Kwak, Y. S., Kyung, J. S., Kim, J. S., Cho, J. Y. and Rhee, M. H. 2010. Anti-hyperlipidemic effects of red ginseng acidic polysaccharide from Korean red ginseng. Biol. Pharm. Bull. 33, 468-472. 

  15. Lee, K. W., Jung, S. Y., Choi, S. M. and Yang, E. J. 2012. Effects of ginsenoside Re on LPS-induced inflammatory mediators in BV2 microglial cells. BMC Complement. Altern. Med. 12, 196. 

  16. Lee, S. H., Soyoola, E., Chanmugam, P., Hart, S., Sun, W., Zhong, H., Liou, S., Simmons, D. and Hwang, D. 1992. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J. Biol. Chem. 267, 25934-25938. 

  17. Mariotto, S., Suzuki, Y., Persichini, T., Colasanti, M., Suzuki, H. and Cantoni, O. 2007. Cross-talk between NO and arachidonic acid in inflammation. Curr. Med. Chem. 14, 1940-1944. 

  18. Mathrani, V. C., Kenyon, N. J., Zeki, A. and Last, J. A. 2007. Mouse models of asthma: can they give us mechanistic insights into the role of nitric oxide? Curr. Med. Chem. 14, 2204-2213. 

  19. Moynagh, P. N. 2005. The NF-kappaB pathway. J. Cell Sci. 118, 4589-4592. 

  20. Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051-3064. 

  21. Nathan, C. and Xie, Q. W. 1994. Nitric oxide synthases: roles, tolls, and controls. Cell 78, 915-918. 

  22. Pacher, P., Beckman, J. S. and Liaudet, L. 2007. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315-424. 

  23. Ran, S. and Montgomery, K. E. 2012. Macrophage-mediated lymphangiogenesis: the emerging role of macrophages as lymphatic endothelial progenitors. Cancers (Basel) 4, 618-657. 

  24. Rossol, M., Heine, H., Meusch, U., Quandt, D., Klein, C., Sweet, M. J. and Hauschildt, S. 2011. LPS-induced cytokine production in human monocytes and macrophages. Crit. Rev. Immunol. 31, 379-446. 

  25. Salinas, G., Rangasetty, U. C., Uretsky, B. F. and Birnbaum, Y. 2007. The cycloxygenase 2 (COX-2) story: it's time to explain, not inflame. J. Cardiovasc. Pharmacol. Ther. 12, 98-111. 

  26. Tachikawa, E., Kudo, K., Harada, K., Kashimoto, T., Miyate, Y., Kakizaki, A. and Takahashi, E. 1999. Effects of ginseng saponins on responses induced by various receptor stimuli. Eur. J. Pharmacol. 369, 23-32. 

  27. Tak, P. P. and Firestein, G. S. 2001. NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7-11. 

  28. Tsatsanis, C., Androulidaki, A., Venihaki, M. and Margioris, A. N. 2006. Signaling networks regulating cyclooxygenase-2. Int. J. Biochem. Cell Biol. 38, 1654-1661. 

  29. Tsoyi, K., Kim, H. J., Shin, J. S., Kim, D. H., Cho, H. J., Lee, S. S., Ahn, S. K., Yun-Choi, H. S., Lee, J. H., Seo, H. G. and Chang, K. C. 2008. HO-1 and JAK-2/STAT-1 signals are involved in preferential inhibition of iNOS over COX-2 gene expression by newly synthesized tetrahydroisoquinoline alkaloid, CKD712, in cells activated with lipopolysacchride. Cell. Signal. 10, 1839-1847. 

  30. Wu, C. F., Bi, X. L. and Yang, J. Y., et al. 2007. Differential effects of ginsenosides on NO and TNF- ${\alpha}$ production by LPS-activated N9 microglia. Int. Immunopharmacol. 7, 313-320. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로