최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기멤브레인 = Membrane Journal, v.26 no.6, 2016년, pp.407 - 420
The fuel cell technology as a green energy source has been actively studied to solve energy shortages and pollution problems. The generating efficiency of fuel cell is high because the electricity is directly produced by using hydrogen and oxygen and the additional power generator is not needed. The...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
연료전지가 사용되는 산업은 무엇인가? | 연료전지는 전기, 전자, 통신뿐만 아니라 가전, 항공 우주 산업, 자동차 산업, 로봇 산업 등 고부가가치 산업에도 영역을 넓히고 있다(Fig. 1)[1]. | |
연료전지의 분류를 전해질에 따라 할 시 어떻게 구분되는가? | 연료전지는 전해질의 종류에 따라 운전온도가 결정되며, 일반적으로 고분자 전해질 연료전지(polymer electrolyte membrane fuel cell, PEMFC), 알칼리 연료전지 (alkaline fuel cell, AFC), 직접 메탄올 연료전지(direct methanol fuel cell, DMFC), 인산형 연료전지(phosphoric acid fuel cell, PAFC), 용융탄산염 연료전지(Molton Carbonate fuel cell, MCFC), 고체산화물 연료전지 (Solid oxide fuel cell, SOFC)로 나뉘게 된다. Table 1에 연료전지의 분류에 대해 간략히 나타내었다[7]. | |
연료전지의 구동방식은 무엇인가? | 연료전지의 구동방식은 화학에너지를 전기에너지로 변환하는 시스템으로써, 기존의 에너지 변환 방식의 문제점인 환경오염물질 배출, 에너지 생산 및 이송의 어 려움, 제한된 사용분야 등 여러 단점들을 보완하는 시스템이다[1-3]. 급속한 산업 발달로 인한 에너지 부족현상이 점점 심화되고 있으며, 환경 또한 심각한 문제에 직면하고 있다[4]. |
J. M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, and N. Ogata, "Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells", Solid State Ionics, 147, 189 (2002).
V. Ramani, H. R. Kunz, and J. M. Fenton, "Investigation of Nafion/HPA composite membranes for high temperature/low relative humidity PEMFC operation", J. Membr. Sci., 232, 31 (2004).
D. Lu, W. Lu, C. Li, J. Liu, and J. Xu, "Proton conducting composite membranes derived from poly(2,6-dimethyl-1,4-phenylene oxide) doped with phosphosilicate gels", Solid State Ionics, 177, 1111 (2006).
J. Stephens, "Fuel processing for fuel cell power systems", Fuel cells Bulletins, 12, 6 (1996).
D. Y. Kim and J. T. Hwang, "Clean energy technology roadmap", pp. 22-68, KETEP, August (2016).
N. S. An, "Energy technology R&D warehouse: fuel cell", KETEP, October (2012).
J. Y. Park, J. K. Choi, K. J. Choi, T. S. Hwang, H. J. Kim, and Y. T. Hong, "Effects of mixed casting solvents on morphology and characteristics of sulfonated poly(aryl ether sulfone) membranes for DMFC applications", Membr. J., 18, 282 (2008).
O. Okada and K. Yokoyama, "Development of polymer electrolyte fuel cell cogeneration systems for residential applications", Fuel Cell, 1, 72 (2008).
Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membrane for fuel cells operating above $100^{\circ}C$ ", Chem. Mater., 15, 4896 (2003).
D. J. Kim and S. Y. Nam, "Research trend of organic/ inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012).
K. Sundmacher and K. Scott, "Direct methanol polymer electrolyte fuel cell: Analysis of charge and mass transfer in the vapour-liquid-solid system", Chem. Eng. Sci., 54, 2927 (1999).
B. Pivovar, "2011 Alkaline membrane fuel cell workshop final report" (2012).
S. L. Chena, A. B. Bocarsly, and J. Benziger, "Nafion layered sulfonated polysulfone fuel cell membranes", J. Power Sources, 152, 27 (2005).
S. L. Chen, L. Krishnan, S. Srinivasan, J. Benziger, and A. B. Bocarsly, "Ion exchange resin/polystyrene sulfonate composite membranes for PEM fuel cells", J. Membr. Sci., 243, 327 (2004).
J. Jeong, K. Yoon, J. K. Choi, Y. J. Kim, and Y. T. Hong, "Preparation and characterization of the $H_3PO_4$ -doped sulfonated poly(arylether benzimidazole) membrane for polymer electrolyte membrane Fuel Cell", Membr. J., 16, 276 (2006).
M. C. Yoo, B. J. Chang, J. H. Kim, S. B. Lee, and Y. T. Lee, "Sulfonated perfluorocycobutyl biphenylene polymer electrolyte membranes for fuel cells", Membr. J., 15, 355 (2005).
K. M. Nouela and P. S. Fedkiwa, "Nafion $^{(R)}$ based composite polymer electrolyte membranes", Electrochem. Acta., 43, 2381 (1998).
J. A. Kerres, "Development of ionomer membranes for fuel cells", J. Membr. Sci., 185, 3 (2001).
O. Savadogo, "Emerging membranes for electro chemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications", J. Power Sources, 127, 135 (2004).
M. A. Jeong, D. H. Yu, M. J. Kho, J. W. Rhim, H. S. Byun, M. S. Seo, and S. Y. Nam, "Preperation and characterization of PVdF microporous membrane with additive for recharge battery", Membr. J., 18, 84 (2008).
D. H. Yu, M. A. Jeong, J. W. Rhim, H. S. Byun, H. O. Too, J. M. Kim, M. S. Seo, and S. Y. Nam, "Preparation and characterization of PVdF-HFP microporous membranes for Li-ion rechargeable battery", Membr. J., 17, 359 (2007).
K. Ramya, G. Velayutham, C. K. Subramaniam, N. Rajalakshmi, and K. S. Dhathathreyan, "Effect of solvents on the characteristics of Nafion $^{(R)}$ /PTFE composite membranes for fuel cell applications", J. Power Sources, 160, 10 (2006).
M. H. Chen, T. C. Chiao, and T. W. Tseng, "Preparation of sulfonated polysulfone/polysulfone and aminated polysulfone/polysulfone blend membranes", J. Appl. Polym. Sci., 61, 1205 (1996).
J. Kerres, W. Cui, R. Disson, and W. Neubrand, "Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU Crosslinked PSU blend membranes by disproportionation of sulfinic acid groups", J. Membr. Sci., 139, 211 (1998).
C. Hasiotis, V. Deimede, and C. Kontoyannis, "New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole", Electrochim. Acta, 46, 2401 (2001).
F. Lufrano, G. Squadrito, A. Patti, and E. P. lacqua, "Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells", J. Appl. Polym. Sci., 77, 1250 (2000).
M. Rikukawa and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 1463 (2000).
H. S. Shin, C. S. Lee, J. H. Jun, S. Y. Jung, J. W. Rhim, and S. Y. Nam, "Preparation and characterization of ion exchange membrane for direct methanol fuel cell (DMFC) suing sulfonated polysulfone", Membr. J., 12, 247 (2002).
T. Kobayashi, M. Rikukawa, K. Sanui, and N. Ogata, "Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl- 1,4-phenylene)", Solid State Ionics, 106, 219 (1998).
C. Geniesa, R. Merciera, B. Silliona, N. Cornetb, G. Gebelb, and M. Pineric, "Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes", Polymer, 42, 359 (2001).
K. D. Kreuer, "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", J. Membr. Sci., 185, 29 (2001).
D. J. Jones and J. Roziere, "Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications", J. Membr. Sci., 185, 41 (2001).
B. K. Park, S. H. Kong, Y. J. Kim, and S. Y. Nam, "Organic/inorganic hybrid electrolytes for the application of direct methanol fuel cell (DMFC) - Preparation and properties of sulfonated SEBS (SSEBS)-clay hybrid membranes -", Membr. J., 15, 165 (2005).
S. W. Yoon and D. H. Kim, "Preparation and characterization of PVA/PAM electrolyte membranes containing silica compound for direct methanol fuel cell application", Polymer(Korea), 34, 45 (2010).
J. H. Sauk and G. Shul, "Effect of crossover on the performance of direct methanol fuel cell(DMFC)", Chem. Eng. J., 37, 21 (1999).
B. S. Lee, S. K. Jung, and J. W. Rhim, "Preparation and characterization of the impregnation to porous membranes with PVA/PSSA-MA for fuel cell applications", Membr. J., 35, 296 (2011).
Y. M. Lee and H. B. Park, "Development of membrane materials for direct methanol fuel cell", Membr. J., 10, 103 (2000).
V. I. Matryonin, A. T. Ovchinikov, and A. P. Tzedilkin, "Investigation of the operating parameters influence on H2-O2 alkaline fuel cell performance", Int. J. Hydrogen Energy, 22, 1047 (1997).
B. Xing and O. Savadogo, "Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI)", Electrochem. Commun., 2, 697 (2000).
T. Burchardt, P. Gouerec, E. Sanchez-Cortezon, Z. Karichev, and J. H. Miners, "Alkaline fuel cells: Contemporary advancement and limitations", Fuel Cells, 81, 2151 (2002).
J. R. Varcoe and R. C. T. Slade, "Prospects for alkaline anion-exchange membranes in low temperature fuel cells", Fuel Cells, 5, 187 (2005).
B. Y. S. Lin, D. W. Kirk, and S. J. Thorpe, "Performance of alkaline fuel cells: a possible future energy system", J. Power Sources, 161, 474 (2006).
C. H. Woo, "Study on matrix module for predicting of emerging ICT technology", master degree Dissertation, Univ. of Hoseo, asan, Chungcheongnam-do (2014).
"Analysis of ICT technology competitiveness using quantitative information for 2015", pp. 11-15, IITP, December (2015).
"Development of core components and element technology for wearable smart device", pp. 232-233, KISPEP, January (2016).
S. Y. No, G. Y. Jang, M. J. Kim, and J. W. Lee, "2009 National R&D patent performance survey, analysis report", pp. 109-110, KIPO, December (2009).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.