$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고분자 전해질 막 연료전지 응용을 위한 탄화수소계 기반 가교 전해질 막의 연구동향
Research of Cross-linked Hydrocarbon based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications 원문보기

멤브레인 = Membrane Journal, v.30 no.6, 2020년, pp.395 - 408  

고한솔 (경상대학교 나노신소재융합공학과) ,  김미정 (경상대학교 나노신소재융합공학과) ,  남상용 (경상대학교 나노신소재융합공학과) ,  김기현 (경상대학교 나노신소재융합공학과)

초록
AI-Helper 아이콘AI-Helper

고분자 전해질 막 연료전지(polymer electrolyte membrane fuel cell, PEMFC)는 환경오염물질 배출이 없는 친환경 에너지 변환 장치로 주목을 받고 있다. PEMFC의 구성요소 중 고분자 전해질 막(polymer electrolyte membrane, PEM)은 음극에서 발생되는 수소이온을 양극으로 전달하는 역할과 동시에 분리막으로써 연료의 투과를 차단하는 역할을 수행하는 핵심 소재이다. 대표적으로 Nafion®과 같은 과불소화계 고분자 전해질 막이 상용화 되어있지만 높은 단가 및 분해 시 환경오염물질이 배출되는 단점이 존재하여, 이를 대체할 탄화수소계 고분자를 활용한 전해질 막 개발에 관한 연구들이 수행되고 있다. 높은 수소이온 전도도를 가지며 동시에 우수한 물리·화학적 안정성을 갖는 탄화수소계 고분자 기반 전해질 막을 개발하기 위해 가교 구조가 도입된 전해질 막을 개발하는 연구들이 보고되고 있다. 본 총설은 가교 전해질 막을 제조하기 위해 이온교환 작용기가 도입된 탄화수소계 고분자를 활용하여 다양한 종류의 가교 전해질 막을 제조하는 방법에 대해 논하였다.

Abstract AI-Helper 아이콘AI-Helper

Polymer electrolyte membrane fuel cells (PEMFCs) have gained much attention as eco-friendly energy conversion devices without emission of environmental pollutant. Polymer electrolyte membrane (PEM) that can transfer proton from anode to cathode and also prevent fuel cross-over has been regarded as a...

주제어

참고문헌 (58)

  1. E. Commissie, "A Roadmap for moving to a competitive low carbon economy in 2050", Europese Commissie, Brussel (2011). 

  2. V. UNFCCC, "Adoption of the Paris agreement", Proposal by the President (2015). 

  3. S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K.-T. Lau, and J. H. Lee, "Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges", Progress in Polymer Science, 36, 813 (2011). 

  4. W. Daud, R. Rosli, E. Majlan, S. Hamid, R. Mohamed, and T. Husaini, "PEM fuel cell system control: A review", Renew. Energy, 113, 620 (2017). 

  5. M. Zaton, J. Roziere, and D. Jones, "Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: A review", Sustain. Energy Fuels, 1, 409 (2017). 

  6. K. A. Mauritz and R. B. J. C. r. Moore, "State of understanding of Nafion", Phys. Chem. Chem. Phys., 104, 4535 (2004). 

  7. A. Vitale, R. Bongiovanni, and B. J. C. r. Ameduri, "Fluorinated oligomers and polymers in photopolymerization", Chem. Rev., 115, 8835 (2015). 

  8. D. A. Schiraldi, "Perfluorinated polymer electrolyte membrane durability", J. Macromol. Sci. Polymer Rev., 46, 315 (2006). 

  9. F. M. Hekster, R. W. Laane, and P. De Voogt, "Environmental and toxicity effects of perfluoroalkylated substances", Rev. Environ. Contam. Toxicol., 99 (2003). 

  10. J. Serpico, S. Ehrenberg, J. Fontanella, X. Jiao, D. Perahia, K. McGrady, E. Sanders, G. Kellogg, and G. J. M. Wnek, "Transport and structural studies of sulfonated styrene-ethylene copolymer membranes", Macromolecules, 35, 5916 (2002). 

  11. C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, and M. J. P. Pineri, "Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes", Polymer, 42, 359 (2001). 

  12. K. Miyatake and A. S. J. J. o. P. S. P. A. P. C. Hay, "Synthesis and properties of poly(arylene ether) s bearing sulfonic acid groups on pendant phenyl rings", Polym. Chem., 39, 3211 (2001). 

  13. K. Kim, P. Heo, T. Ko, and J.-C. Lee, "Semi-interpenetrating network electrolyte membranes based on sulfonated poly(arylene ether sulfone) for fuel cells at high temperature and low humidity conditions", Electrochem. Commun., 48, 44 (2014). 

  14. K. Kim, J. Bae, M.-Y. Lim, P. Heo, S.-W. Choi, H.-H. Kwon, and J.-C. Lee, "Enhanced physical stability and chemical durability of sulfonated poly (arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications", J. Membr. Sci., 525, 125 (2017). 

  15. S. Kaliaguine, S. Mikhailenko, K. Wang, P. Xing, G. Robertson, and M. Guiver, "Properties of SPEEK based PEMs for fuel cell application", Catal. Today, 82, 213 (2003). 

  16. S. D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson, and M. D. Guiver, "Proton conducting membranes based on Cross-linked sulfonated poly(ether ether ketone)(SPEEK)", J. Membr. Sci., 233, 93 (2004). 

  17. Y. Woo, S. Y. Oh, Y. S. Kang, and B. Jung, "Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell", J. Membr. Sci., 220, 31 (2003). 

  18. Y. Yin, O. Yamada, K. Tanaka, and K.-I. Okamoto, "On the development of naphthalene-based sulfonated polyimide membranes for fuel cell applications", Polym. J., 38, 197 (2006). 

  19. C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011). 

  20. K. B. Wiles, C. M. de Diego, J. de Abajo, and J. E. McGrath, "Directly copolymerized partially fluorinated disulfonated poly(arylene ether sulfone) random copolymers for PEM fuel cell systems: Synthesis, fabrication and characterization of membranes and membrane-electrode assemblies for fuel cell applications", J. Membr. Sci., 294, 22 (2007). 

  21. B. Yang, A. J. E. Manthiram, and S. S. Letters, "Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells", Electrochem. Solid-State Lett., 6, A229 (2003). 

  22. K. Kim, S.-K. Kim, J. O. Park, S.-W. Choi, K.-H. Kim, T. Ko, C. Pak, and J.-C. Lee, "Highly reinforced pore-filling membranes based on sulfonated poly(arylene ether sulfone)s for high-temperature/low-humidity polymer electrolyte membrane fuel cells", J. Membr. Sci., 537, 11 (2017). 

  23. L. Li and Y. J. J. o. m. s. Wang, "Sulfonated polyethersulfone Cardo membranes for direct methanol fuel cell", J. Membr. Sci., 246, 167 (2005). 

  24. H. Hou, M. L. Di Vona, and P. Knauth, "Building bridges: Crosslinking of sulfonated aromatic polymers - A review", J. Membr. Sci., 423-424, 113 (2012). 

  25. H. Li, G. Zhang, J. Wu, C. Zhao, Q. Jia, C. M. Lew, L. Zhang, Y. Zhang, M. Han, and J. J. J. o. P. S. Zhu, "A facile approach to prepare self-crosslinkable sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells", J. Power Sources, 195, 8061 (2010). 

  26. J. Han, K. Kim, J. Kim, S. Kim, S.-W. Choi, H. Lee, J.-j. Kim, T.-H. Kim, Y.-E. Sung, and J.-C. Lee, "Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application", J. Membr. Sci., 579, 70 (2019). 

  27. M. Kido, Z. Hu, T. Ogo, Y. Suto, K.-i. Okamoto, and J. Fang, "Novel preparation method of crosslinked sulfonated polyimide membranes for fuel cell application", Chem. Lett., 36, 272 (2007). 

  28. M. Li, G. Zhang, S. Xu, C. Zhao, M. Han, L. Zhang, H. Jiang, Z. Liu, and H. Na, "Cross-linked polyelectrolyte for direct methanol fuel cells applications based on a novel sulfonated cross-linker", J. Power Sources, 255, 101 (2014). 

  29. S.-K. Kim, T.-H. Kim, T. Ko, and J.-C. Lee, "Crosslinked poly(2,5-benzimidazole) consisting of wholly aromatic groups for high-temperature PEM fuel cell applications", J. Membr. Sci., 373, 80 (2011). 

  30. K. Si, R. Wycisk, D. Dong, K. Cooper, M. Rodgers, P. Brooker, D. Slattery, and M. Litt, "Rigid-rod poly(phenylenesulfonic acid) proton exchange membranes with cross-linkable biphenyl groups for fuel cell applications", Macromolecules, 46, 422 (2013). 

  31. K. Nakabayashi, T. Higashihara, and M. Ueda, "Polymer electrolyte membranes based on crosslinked highly sulfonated multiblock copoly(ether sulfone)s", Macromolecules, 43, 5756 (2010). 

  32. M. Schuster, K.-D. Kreuer, H. T. Andersen, and J. J. M. Maier, "Sulfonated poly(phenylene sulfone) polymers as hydrolytically and thermooxidatively stable proton conducting ionomers", Macromolecules, 40, 598 (2007). 

  33. C. Zhang, X. Guo, J. Fang, H. Xu, M. Yuan, and B. Chen, "A new and facile approach for the preparation of Cross-linked sulfonated poly(sulfide sulfone) membranes for fuel cell application", J. Power Sources, 170, 42 (2007). 

  34. M. Song, X. Lu, Z. Li, G. Liu, X. Yin, and Y. Wang, "Compatible ionic crosslinking composite membranes based on SPEEK and PBI for high temperature proton exchange membranes", Int. J. Hydrog. Energy, 41, 12069 (2016). 

  35. H. Zhang, X. Li, C. Zhao, T. Fu, Y. Shi, and H. Na, "Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance", J. Membr. Sci., 308, 66 (2008). 

  36. J. Wang, C. Zhao, G. Zhang, Y. Zhang, J. Ni, W. Ma, and H. J. J. o. M. S. Na, "Novel covalentionically Cross-linked membranes with extremely low water swelling and methanol crossover for direct methanol fuel cell applications", J. Membr. Sci., 363, 112 (2010). 

  37. S. Zhong, X. Cui, H. Cai, T. Fu, C. Zhao, and H. J. J. o. P. S. Na, "Crosslinked sulfonated poly (ether ether ketone) proton exchange membranes for direct methanol fuel cell applications", J. Power Sources, 164, 65 (2007). 

  38. K.-S. Lee, M.-H. Jeong, Y.-J. Kim, S.-B. Lee, and J.-S. Lee, "Fluorinated aromatic polyether ionomers containing perfluorocyclobutyl as cross-link groups for fuel cell applications", Chem. Mater., 24, 1443 (2012). 

  39. K. D. Papadimitriou, F. Paloukis, S. G. Neophytides, and J. K. J. M. Kallitsis, "Cross-linking of side chain unsaturated aromatic polyethers for high temperature polymer electrolyte membrane fuel cell applications", Macromolecules, 44, 4942 (2011). 

  40. M. Han, G. Zhang, K. Shao, H. Li, Y. Zhang, M. Li, S. Wang, and H. J. J. o. M. C. Na, "Carboxyl-terminated benzimidazole-assisted Cross-linked sulfonated poly(ether ether ketone)s for highly conductive PEM with low water uptake and methanol permeability", J. Mater. Chem., 20, 3246 (2010). 

  41. C. Liu, Z. Wu, Y. Xu, S. Zhang, C. Gong, Y. Tang, D. Sun, H. Wei, and C. Shen, "Facile onestep fabrication of sulfonated polyhedral oligomeric silsesquioxane Cross-linked poly(ether ether ketone) for proton exchange membranes", Polym. Chem., 9, 3624 (2018). 

  42. Y. Zhang, X. Fei, G. Zhang, H. Li, K. Shao, J. Zhu, C. Zhao, Z. Liu, M. Han, and H. Na, "Preparation and properties of epoxy-based Cross-linked sulfonated poly(arylene ether ketone) proton exchange membrane for direct methanol fuel cell applications", Int. J. Hydrog. Energy, 35, 6409 (2010). 

  43. C. Zhao, H. Lin, M. Han, and H. Na, "Covalently Cross-linked proton exchange membranes based on sulfonated poly(arylene ether ketone) and polybenzimidazole oligomer", J. Membr. Sci., 353, 10 (2010). 

  44. D. S. Phu, C. H. Lee, C. H. Park, S. Y. Lee, and Y. M. Lee, "Synthesis of crosslinked sulfonated poly(phenylene sulfide sulfone nitrile) for direct methanol fuel cell applications", Macromol. Rapid. Commun., 30, 64 (2009). 

  45. H. Li, G. Zhang, J. Wu, C. Zhao, Y. Zhang, K. Shao, M. Han, H. Lin, J. Zhu, and H. Na, "A novel sulfonated poly(ether ether ketone) and Cross-linked membranes for fuel cells", J. Power Sources, 195, 6443 (2010). 

  46. W. Ma, C. Zhao, J. Yang, J. Ni, S. Wang, N. Zhang, H. Lin, J. Wang, G. Zhang, Q. Li, and H. Na, "Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications", Energy Environ. Sci., 5, (2012). 

  47. J.-y. Park, T.-H. Kim, H. J. Kim, J.-H. Choi, and Y. T. Hong, "Crosslinked sulfonated poly(arylene ether sulfone) membranes for fuel cell application", Int. J. Hydrog. Energy, 37, 2603 (2012). 

  48. K. Kim, P. Heo, W. Hwang, J. H. Baik, Y. E. Sung, and J. C. Lee, "Cross-linked sulfonated poly (arylene ether sulfone) containing a flexible and hydrophobic bishydroxy perfluoropolyether crosslinker for high-performance proton exchange membrane", ACS Appl. Mater. Interfaces, 10, 21788 (2018). 

  49. T. Ko, K. Kim, B.-K. Jung, S.-H. Cha, S.-K. Kim, and J.-C. Lee, "Cross-linked sulfonated poly(arylene ether sulfone) membranes formed by in situ casting and click reaction for applications in fuel cells", Macromolecules, 48, 1104 (2015). 

  50. M. Han, G. Zhang, M. Li, S. Wang, Y. Zhang, H. Li, C. M. Lew, and H. Na, "Considerations of the morphology in the design of proton exchange membranes: Cross-linked sulfonated poly(ether ether ketone)s using a new carboxyl-terminated benzimidazole as the cross-linker for PEMFCs", Int. J. Hydrog. Energy, 36, 2197 (2011). 

  51. M. Li, G. Zhang, H. Zuo, M. Han, C. Zhao, H. Jiang, Z. Liu, L. Zhang, and H. J. J. o. m. s. Na, "End-group Cross-linked polybenzimidazole blend membranes for high temperature proton exchange membrane", J. Membr. Sci., 423, 495 (2012). 

  52. J. Kim, K. Kim, J. Han, H. Lee, H. Kim, S. Kim, Y. E. Sung, and J. C. J. J. o. P. S. P. A. P. C. Lee, "End group Cross-linked membranes based on highly sulfonated poly(arylene ether sulfone) with vinyl functionalized graphene oxide as a cross-linker and a filler for proton exchange membrane fuel cell application", J. Polym. Sci., 58, 3456, (2020) 

  53. S. Y. Lee, N. R. Kang, D. W. Shin, C. H. Lee, K.-S. Lee, M. D. Guiver, N. Li, Y. M. J. E. Lee, and E. Science, "Morphological transformation during cross-linking of a highly sulfonated poly(phenylene sulfide nitrile) random copolymer", Energy Environ. Sci., 5, 9795 (2012). 

  54. W. H. Lee, K. H. Lee, D. W. Shin, D. S. Hwang, N. R. Kang, D. H. Cho, J. H. Kim, and Y. M. J. J. o. P. S. Lee, "Dually Cross-linked polymer electrolyte membranes for direct methanol fuel cells", J. Power Sources, 282, 211 (2015). 

  55. D. W. Shin, S. Y. Lee, N. R. Kang, K. H. Lee, D. H. Cho, M. J. Lee, Y. M. Lee, and K. J. I. j. o. h. e. Do Suh, "Effect of crosslinking on the durability and electrochemical performance of sulfonated aromatic polymer membranes at elevated temperatures", Int. J. Hydrog. Energy, 39, 4459 (2014). 

  56. N. R. Kang, S. Y. Lee, D. W. Shin, D. S. Hwang, K. H. Lee, D. H. Cho, J. H. Kim, and Y. M. Lee, "Effect of end-group cross-linking on transport properties of sulfonated poly(phenylene sulfide nitrile)s for proton exchange membranes", J. Power Sources, 307, 834 (2016). 

  57. K. Kim, P. Heo, J. Han, J. Kim, and J.-C. Lee, "End-group Cross-linked sulfonated poly(arylene ether sulfone) via thiolene click reaction for high-performance proton exchange membrane", J. Power Sources, 401, 20 (2018). 

  58. K.-S. Lee, M.-H. Jeong, J.-P. Lee, and J.-S. Lee, "End-group Cross-linked poly(arylene ether) for proton exchange membranes", Macromolecules, 42, 584 (2009). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로