최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국지능시스템학회 논문지 = Journal of Korean institute of intelligent systems, v.26 no.6, 2016년, pp.445 - 451
김경환 (한성대학교 전자정보공학과) , 정성훈 (한성대학교 전자정보공학과)
This paper introduces a postprocessing method, an iteration method for melody, and an average neural network method for learning a large number of songs in order to improve musically insufficient parts in automatic composition using existing artificial neural network. The melody of songs composed by...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
조성은 무엇인가? | 음악 이론에는 조성이라는 것이 있다. 조성은 으뜸음을 중심으로 온음과 반음을 규칙적으로 배열하여 갖게 되는 음계의 성격을 말한다. 하나의 곡은 보통 하나의 조성으로 되어 있고 조성에 따라 곡의 분위기가 결정된다. | |
진화알고리즘을 이용한 자동작곡 시 컴퓨터가 만든 음악을 사람이 직접 평가하기 어려운 이유는 무엇인가? | 그렇기 때문에 대부분의 진화알고리즘을 이용한 자동작곡에서는 사람이 평가한다. 하지만 사람이 수많은 곡을 듣고 일일이 평가하는 것도 매우 지루하고 어려운 일이며 또한 사람이 평가하더라도 개인적인 취향이 다르기 때문에 객관적인 평가가 어렵다. | |
인공신경망을 이용하여 작곡된 곡의 멜로디의 문제점은 무엇인가? | 본 논문에서는 기존의 인공신경망을 이용한 자동작곡에서 음악적으로 부족한 부분을 개선하기 위해 조성을 후처리하는 방법과 멜로디에 반복성을 주는 방법 그리고 다수의 곡을 학습하기 위한 평균 신경망 방법을 제안한다. 인공신경망을 이용하여 작곡된 곡의 멜로디는 인공신경망에 학습된 곡의 멜로디에 따라서 출력되는 것으로 음악적으로 특정한 조성에 맞는 곡이 출력되지 않으며 또한 반복적인 멜로디 구성이 나오기 어렵다. 본 논문에서는 이를 해결하기 위하여 인공신경망이 출력한 멜로디를 음악이론에 따라서 특정한 조성으로 후처리하는 방법과 마디구분을 반복적으로 구성하여 멜로디 진행에 반복을 주는 방법을 제안한다. |
B. Johanson and R. Poli, "GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness Raters" Proceedings of the Third Annual Conference, pp. 181-186, 1998.
N. Tokui and H. Iba, "Music Composition with Interactive Evolutionary Computation," Proceedings of the Third International Conference on Generative Art, pp. 215-226, 2000.
A. Santos, B. Arcay, J. Dorado, J. Romero, and J. Rodriguez, "Evolutionary Computation Systems for Musical Composition," Proceedings of the International Conference Acoustic and Music: Theory and Applications, pp. 97-102, 2000.
C. Chen and R. Miikkulainen, "Creating Melodies with Evolving Recurrent Neural Networks," Proceedings of the 2001 International Joint Conference on Neural Networks, pp. 2241-2246, 2001.
Debora C. Correa, Alexandre L. M. Levada, Jose H. Saito, and Joao F. Mari, "Neural network based systems for computer-aided musical composition: supervised x unsupervised learning," Proceeding SAC '08 Proceedings of the 2008 ACM symposium on Applied computing, pp. 1738-1742, 2008.
T. Oliwa and M. Wagner, "Composing Music with Neural Networks and Probabilistic Finite-State Machines," Applications of Evolutionary Computing: EvoWorkshops 2008, pp. 503-508, 2008.
H. Kim, B. Kim, and B. Zhang, "Learning music and generation of crossover music using evolutionary hypernetworks," Proceedings of Korea Computer Congress 2009, pp. 134-138, 2009.
G. Bickerman, S. Bosley, P. Swire, and Rober M. Keller, "Learning to Create Jazz Melodies Using Deep Belief Nets," Proceedings of the International Conference on Computational Creativity, pp. 228-237, 2010.
Andres E. Coca, Roseli A. F. Romero, and Liang Zhao, "Generation of composed musical structures through recurrent neural networks based on chaotic inspiration," Proceedings of International Joint Conference on Neural Networks," pp. 3220-3226, 2011.
J. D. Fernandez and F. Vico, "AI Methods in Algorithmic Composition: A Comprehensive Survey," Journal of Artificial Intelligence Research," vol. 48, pp. 513-582, 2013.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.