$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

3차원 체적팬텀을 이용한 토모치료의 Delivery Quality Assurance 평가
Evaluation of DQA for Tomotherapy using 3D Volumetric Phantom 원문보기

방사선기술과학 = Journal of radiological science and technology, v.39 no.4, 2016년, pp.607 - 614  

이상욱 (가톨릭대학교 인천성모병원 종양학과) ,  김정구 (한서대학교 방사선학과)

초록
AI-Helper 아이콘AI-Helper

토모를 이용한 회전 방사선치료 시 2차원적인 선량분포 평가 대신 3차원적 선량분포 평가의 필요성에 관하여 연구하였다. 토모 치료 부위의 정확한 선량분포를 측정하기 위하여 RANDO phantom을 이용하였으며, 평가 대조군으로 gafchromic EBT2 필름의 선량분포와 3차원 체적팬텀인 ArcCHECK phantom을 이용하여 3차원적인 선량분포를 gamma correction(3%/3 mm, 2%/2 mm)으로 평가하였다. 팬텀에 대한 치료 영역은 각각 0.5, 1, 1.5, 2, 2.5, 3 cm로 설정하였으며, 처방선량을 1,200 cGy로 하여 5회씩 선량을 조사하였다. Gafchromic EBT2 필름을 이용한 절대선량 측정 시 평균오차는 $0.76{\pm}0.59%$이었으며, ArcCHECK phantom을 이용한 절대선량 측정 시 평균오차는 $1.37{\pm}0.76%$로 나타났다. 선량분포의 평가에서 gafchromic EBT2 필름인 경우 gamma correction(3%/3 mm)은 평균 $97.72{\pm}0.02%$, ArcCHECK phantom인 경우 평균 $99.26{\pm}0.01%$로 측정되었다. 또한 gafchro mic EBT2 필름에서 gamma correction(2%/2 mm)의 평균은 $94.21{\pm}0.02%$이며, ArcCHECK phantom에서는 평균은 $93.02{\pm}0.01%$로 측정되었다. 토모치료를 이용한 환자 DQA에서 3차원 체적팬텀인 ArcCHECK phantom을 이용한 선량분포 평가가 cheese phantom을 이용한 선량분포 평가에 비하여 치료영역 주변부에 대한 정확한 측정과 실시간 평가가 가능하므로 환자의 치료가 보다 더 정확하고 빨리 이루어질 수 있을 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

The study investigates the necessity of 3 dimensional dose distribution evaluation instead of point dose and 2 dimensional dose distribution evaluation. Treatment plans were generated on the RANDO phantom to measure the precise dose distribution of the treatment site 0.5, 1, 1.5, 2, 2.5, 3 cm with t...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In the patient DQA using tomotherapy, the assessment using a cheese phantom and gafchormic EBT2 film is disadvantageous in accurately confirming 3D measurement of dose distribution in the peripheral and target areas. In the assessment using ArcCHECK phantom, however, it is possib le to perform an accurate measurement of peripheral areas of the target and real-time assessment. This can promote more accurate, faster radiotherapy for patients.
  • In this study, the absolute and relative dose was evaluated using cheese phantom and ArcCHECK phantom for the assessment of patient DQA in tomotherapy. Following the measurement depending on the size of the target, it confirmed that the error ratio (3%) was within the range of the mean error.
  • In addition, the efficient patient DQA should be possible that simple operation and short time for analysis alongside with an accurate ability dose verification. In this study, we performed an assessment accuracy of dose evaluation and necessity of patient DQA using the evaluation of the point dose using ion chamber and the evaluation of the dose using the 3D volume phantom instead of film in radiosurgery with tomotherapy.
  • In this study, with regards to the measurement using cheese phantom and ArcCHECK phantom in radiosurgery using the characteristics of rotational radiotherapy, the accuracy and the requirement for the absolute and relative dose evaluation were examined. In the patient DQA using tomotherapy, the assessment using a cheese phantom and gafchormic EBT2 film is disadvantageous in accurately confirming 3D measurement of dose distribution in the peripheral and target areas.
  • For evaluation of whether the agreement for point dose evaluation and dose distribution for both phantoms, criteria for acceptance of 3%/3 mm and 2%/2 mm were applied. This was followed by the comparison of the gamma passing ratio of the criteria irradiation volume and the mean irradiated volume for the error measurement. Thus, the percentage of pixels that was lower than the gamma-value of 1 (ɤ %<1) was analyzed (Fig.
  • To assess the accuracy in measuring the absolute dose for Cheese phantom and ArcCHECK phantom, each phantom was compared to the values of dose at the same locations as well as measurements obtained from the irradiated volume in the areas where an ion chamber was placed. The measurement using two phantoms was repeatedly performed five times for each volume to validate the reproducibility.
  • For the assessment of patient DQA using 3D volume phantom, the tomotherapy (Accuray, Hi ART, USA) was used. To establish the treatment plans for the assessment of patient DQA, the RANDO phantom (Radiology Support Devices, USA) and CT (Light SpeedTMRT16,GE,USA) to set 1.25 mm slice thickness were followed by the image acquisition. The volume of interest (VOI) was drawn with a globular shape which diameter is 0.
  • To measure the absolute dose of the phantom, ion chamber (A1SL, Standard Imaging, USA), micro ion chamber (Exradin A16, Standard Imaging, USA) and tomoelectrometer (Standard Imaging, USA) were used. Gafchromic EBT2 film (International specialty products, Wayne, USA) was attached to a cheese phantom for the 2-dimensional evaluation of dose distribution.
  • 64 cc. To perform the patient DQA, treatment plans calculated in the RANDO phantom were mapped onto the cheese phantom and ArcCHECK phantom, respectively. This was followed calculation of dose once again (Fig.

대상 데이터

  • The evaluation of dose distribution was assessed using gafchromic EBT2 film and ArcCHECK phantom. The passing ratio at 3%/3 mm was 99.
본문요약 정보가 도움이 되었나요?

참고문헌 (15)

  1. Mack A., Scheib S.G., Major J., et al.: Precision dosimetry for narrow photon beams used in radiosurgery Determination of Gamma Knife output factors, Medical Physics, 29(9), 2080-2089, 2002 

  2. Choi T.J., Kim O.B.: Evaluation of the output dose of a linear accelerator photon beams by using the ionization chamber TM31010 series through TG-51 protocol to postal monitoring output of RPC for 5 years, Korean Journal of Medical Physics, 22(2), 92-98, 2011 

  3. Welsh J.S., Lock M., Harari P.M., et al.: Clinical implementation of adaptive helical tomotherapy: a unique approach to image-guided intensity modulated radiotherapy, Technology in cancer research & treatment, 5(5), 465-480, 2006 

  4. Cadman P., McNutt T., Bzdusek K.: Validation of physics improvements for IMRT with a commercial treatment-planning system, Journal of Applied Clinical Medical Physics, 6(2), 74-86, 2005 

  5. Mu G., Ludlum E., Xia P.: Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer, Physics in medicine & biology, 53(1), 77-88, 2008 

  6. Bayouth J. E., Wendt D., Morrill S. M.: MLC quality assurance techniques for IMRT applications, Medical Physics, 30(5), 743-750, 2003 

  7. LoSasso T., Chui C. S., Ling C. C.: Comprehensive quality assurance for the delivery of intensity modulated radiotherapy with a multileaf collimator used in the dynamic mode, Medical Physics, 28(11), 2209-2219, 2001 

  8. Ju S. G., Ahn Y. C., Huh S. J., Yeo I. J.: Film dosimetry for intensity modulated radiation therapy: dosimetric evaluation, Medical Physics, 29(3), 351-355, 2002 

  9. Herzen J., Todorovic M., Cremers F., et al.: Dosimetric evaluation of a 2D pixel ionization chamber for implementation in clinical routine, Physics in medicine and biology, 52(4), 1197-1208, 2007 

  10. Daniel L, Misbah G, Di Yan, et al.: Evaluation of a 2D diode array for IMRT assurance. Radiation & Oncology, 70(1), 199-206, 2004 

  11. Young-Taek Oh, Haejin Kang, Miwha Kim et al.: Three-dimensional dosimetry using magnetic resonance imaging of polymer gel, The Journal of the Korean society for therapeutic radiology and oncology, 20(3), 264-273, 2002 

  12. Bedford J.L., Lee Y.K., Wai P., South C.P., Warrington A.P.: Evaluation of the Delta4 phantom for IMRT and VMAT verification, Physics in medicine and biology, 54(9), 167-176, 2009 

  13. Van Esch A., Clermont C., Devillers M., et al.: On-line quality assurance of rotational radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom, Medical Physics, 34(10), 3825-3837, 2007 

  14. H. Fakir, S. Gaede, M. Mulligan, J.Z. Chen.: Development of a novel ArcCHECK insert for routine quality assurance of VMAT delivery including dose calculation with inhomogeneities, Medical Physics., 39(7), 4203-4208, 2012 

  15. Welsh J.S., Lock M., Harari P.M., Tome W.A., et al.: Clinical implementation of adaptive helical tomotherapy: a unique approach to image-guided intensity modulated radiotherapy, Technology in cancer research & treatment, 5(5), 465-480, 2006 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로