$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

새로운 우울증 치료 약물
Novel Pharmacological Treatment for Depression 원문보기

생물정신의학 = Korean journal of biological psychiatry, v.23 no.1, 2016년, pp.1 - 11  

정희정 (부산대학교병원 정신건강의학과) ,  문은수 (부산대학교병원 정신건강의학과)

Abstract AI-Helper 아이콘AI-Helper

Development of various antidepressants such as monoamine oxidase inhibitors, tricyclic antidepressants, selective serotonin reuptake inhibitors, serotonin norepinephrine reuptake inhibitors, and noradrenergic and specific serotonergic antidepressant has led to a tremendous progression of pharmaceuti...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 14)15) 이러한 시도들이 항우울제의 개발로 모두 이어지는 것은 아니겠지만, 우울증 치료의 한계점들을 극복하기 위한 현재의 노력들이 어떻게 진행되고 있는지를 이해하는 것은 미래의 우울증 치료를 부분적으로나마 예측하는 데 도움이 될 수 있다. 따라서 본 논문에서는 잠재적인 항우울제로 관심을 받고 있는 뇌염증반응(neuro-inflammation) 조절제, 산화적 스트레스(oxidative stress) 조절제, 항콜린성 약물, 시상하부-뇌하수체-부신 축(Hypotha-lamic Pituitary Adrenal Axis, 이하 HPA 축) 조절제, 글루타메이트(glutamate) 조절제, opioid 조절제, substance P, neuropeptide Y, galanin과 같은 신경펩타이드(neuropeptide) 조절제에 대한 내용들을 소개하고자 한다.

가설 설정

  • 76) 주요우울증과 양극성우울증 환자에서 ketamine 정맥투여의 항우울효과를 조사한 7개의 이중맹검 무작위 대조군 연구들과 비강내 ketamine 투여의 항우울효과를 조사한 1개의 무작위 대조군 연구를 메타분석한 결과에 서 1일째 항우울효과가 유의하게 입증되었다.76) Ketamine은 다른 약제들에 비해 항우울효과가 신속하게 나타나는 것이 특징적이다. 특히 ketamine의 정맥투여는 치료저항성 우울증 환자에서도 투여 2시간 이내에 신속하게 항우울효과가 유의하게 나타나고, 한 번의 투여가 일주일간 효과가 유의하게 지속되는 결과를 보였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
뇌의 염증반응은 우울증과 어떤 관련이 있는가? 뇌의 염증반응 (neuroinflammation) 이 우울증의 병태생리와 관련이 있다는 연구들이 있다.16) 뇌에서 염증성 사이토카인(inflammatory cytokines)이 증가하게 되면, indolamine 2,3-dioxygenase(IDO) 효소를 증가시켜 세로토닌(serotonin)의 전구물질인 트립토판(tryptophan)을 키누레닌(kynurenine)으로 대사시키게 되므로, 결과적으로는 세로토닌의 농도를 감소시키게 되어 우울증을 유발할 수 있다.17)18) 또한 tumor necrosis factor-alpha( 이하 TNF- α ) 나 inteleukin-1 β(IL-1 β )와 같은 염증성 사이토카인이 신경교세포(microglia)를 과활성화시키게 되어 신경가소성(neuroplasticity)을 감소시키고, 결과적으로는 기분조절과 관련된 신경회로의 기능을 저하시켜 우울증을 유발할 수 있다.19)20) 또한 신경교세포의 과활성화는 글루타메이트(glutamate) 수용체를 활성화시키는 방향으로도 작용하여 우울증을 유발하기도 한다.19)21) 뿐만 아니라 염증성 사이토카인은 HPA 축을 활성화시키고, 억제성 되먹이기전(inhibitory feedback loop)을 억제하여 코티솔(cortisol)을 증가시키게 되어 신경가소성을 감소시켜 우울증을 유발할 수도 있다.22) 또한 HPA 축이 활성화되면 트립토판을 대사하는 tryptophan 2,3-dioxygenase(TDO) 효소를 활성화시켜 트립토판을 감소시키기 때문에 우울증이 유발될 수 있다.23) 이처럼 뇌의 염증반응이 우울증과 관련이 있기 때문에 non-steroidal anti-inflammatory drugs(이하 NSAID) 나 TNF- α 길항제나 오메가 3(omega 3)나 컬큐민(curcumin) 등과 같은 항염증제(anti-inflammatory agent)가 항우울제로 작용할 수 있다.
글루타티온의 전구물질인 NAC은 무슨 기능을 하는가? 최근 잠재적인 항우울제로 주목을 받는 항산화제로는 글루타치온의 전구물질인 N-acetylcysteine(이하 NAC)이다.53) NAC는 다양한 작용을 하는 것으로 알려져 있으며, 염증성 사이토카인을 감소시키거나, 글루타메이트 신경회로를 조절하거나, 신경세포 사멸을 감소시키고, 신경세포발생 (neuro-genesis)을 증가시킬 수 있다.53) NAC 는 주요우울증 환자에서 기존의 항우울제에 병합하였을 때, 12주째에는 위약에 비해 항우울효과가 유의한 차이가 없었으나 16주에는 유의한 것으로 조사되었다.
뇌세포에 작용하는 산화적 스트레스는 우울증과 어떤 관련이 있는가? 46)47) 활성산소(reactive oxygen species, ROS) 나 활성질소(reactive nitrogen species, RNS)들이 세포사멸경로(apoptotic pathway)를 활성화 시킬 수 있고, 반대로 글루타치온(glutathione), 글루타치온 과산화제(glutathione peroxidase), 카탈라제(catalase), superoxide dismutase(SOD), 멜라토닌(melatonin), 코엔자임Q10(coenzyme Q10) 등과 같은 항산화물질들은 활성산소와 활성질소에 의한 세포사멸을 보호할 수 있다.47-50) 이처럼 활성물질들이 뇌세포의 DNA나 RNA 또는 단백질이나 지질의 손상을 일으켜 미토콘드리아의 기능을 저하시키거나 신경가소성(neuroplasticity)을 감소시켜 우울증을 일으킬 수 있다.51-52) 반면에 항산화물질들은 활성물질로부터 세포의 손상을 차단하고 신경가소성을 증가시켜 항우울효과를 지닐 수 있다.47-50)
질의응답 정보가 도움이 되었나요?

참고문헌 (132)

  1. Lopez-Munoz F, Alamo C, Juckel G, Assion HJ. Half a century of antidepressant drugs: on the clinical introduction of monoamine oxidase inhibitors, tricyclics, and tetracyclics. Part I: monoamine oxidase inhibitors. J Clin Psychopharmacol 2007;27:555-559. 

  2. Weilburg JB. An overview of SSRI and SNRI therapies for depression. Manag Care 2004;13(6 Suppl Depression):25-33. 

  3. Benjamin S, Doraiswamy PM. Review of the use of mirtazapine in the treatment of depression. Expert Opin Pharmacother 2011;12:1623-1632. 

  4. Fava M. Augmentation and combination strategies in treatment-resistant depression. J Clin Psychiatry 2001;62 Suppl 18:4-11. 

  5. Fava M. Diagnosis and definition of treatment-resistant depression. Biol Psychiatry 2003;53:649-659. 

  6. Nierenberg AA, Katz J, Fava M. A critical overview of the pharmacologic management of treatment-resistant depression. Psychiatr Clin North Am 2007;30:13-29. 

  7. Nelson JC. Optimizing outcomes in major depressive disorder via augmentation therapy--focus on the role of atypical antipsychotics. Foreword. CNS Drugs 2013;27 Suppl 1:S3-S4. 

  8. Uher R, Mors O, Rietschel M, Rajewska-Rager A, Petrovic A, Zobel A, et al. Early and delayed onset of response to antidepressants in individual trajectories of change during treatment of major depression: a secondary analysis of data from the Genome-Based Therapeutic Drugs for Depression (GENDEP) study. J Clin Psychiatry 2011; 72:1478-1484. 

  9. Mrazek DA, Hornberger JC, Altar CA, Degtiar I. A review of the clinical, economic, and societal burden of treatment-resistant depression: 1996-2013. Psychiatr Serv 2014;65:977-987. 

  10. Pearce EF, Murphy JA. Vortioxetine for the treatment of depression. Ann Pharmacother 2014;48:758-765. 

  11. Smeraldi E, Delmonte D. Agomelatine in depression. Expert Opin Drug Saf 2013;12:873-880. 

  12. Guaiana G, Gupta S, Chiodo D, Davies SJ, Haederle K, Koesters M. Agomelatine versus other antidepressive agents for major depression. Cochrane Database Syst Rev 2013;12:CD008851. 

  13. Hillhouse TM, Porter JH. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol 2015;23:1-21. 

  14. Papakostas GI, Ionescu DF. Towards new mechanisms: an update on therapeutics for treatment-resistant major depressive disorder. Mol Psychiatry 2015;20:1142-1150. 

  15. Rosenblat JD, McIntyre RS, Alves GS, Fountoulakis KN, Carvalho AF. Beyond monoamines-novel targets for treatment-resistant depression: a comprehensive review. Curr Neuropharmacol 2015;13: 636-655. 

  16. Rosenblat JD, Cha DS, Mansur RB, McIntyre RS. Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014;53:23-34. 

  17. Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D, et al. Interferon-alpha-induced changes in tryptophan metabolism. relationship to depression and paroxetine treatment. Biol Psychiatry 2003;54:906-914. 

  18. Capuron L, Ravaud A, Neveu PJ, Miller AH, Maes M, Dantzer R. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry 2002;7:468-473. 

  19. Harry GJ, Kraft AD. Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 2012;33:191-206. 

  20. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 2013;30:297-306. 

  21. Hashimoto K, Malchow B, Falkai P, Schmitt A. Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 2013;263:367-377. 

  22. Sigalas PD, Garg H, Watson S, McAllister-Williams RH, Ferrier IN. Metyrapone in treatment-resistant depression. Ther Adv Psychopharmacol 2012;2:139-149. 

  23. Cowen PJ. Not fade away: the HPA axis and depression. Psychol Med 2010;40:1-4. 

  24. Berk M, Dean O, Drexhage H, McNeil JJ, Moylan S, O'Neil A, et al. Aspirin: a review of its neurobiological properties and therapeutic potential for mental illness. BMC Med 2013;11:74. 

  25. Faridhosseini F, Sadeghi R, Farid L, Pourgholami M. Celecoxib: a new augmentation strategy for depressive mood episodes. A systematic review and meta-analysis of randomized placebo-controlled trials. Hum Psychopharmacol 2014;29:216-223. 

  26. Na KS, Lee KJ, Lee JS, Cho YS, Jung HY. Efficacy of adjunctive celecoxib treatment for patients with major depressive disorder: a metaanalysis. Prog Neuropsychopharmacol Biol Psychiatry 2014;48:79-85. 

  27. Ekdahl CT. Microglial activation-tuning and pruning adult neurogenesis. Front Pharmacol 2012;3:41. 

  28. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 2013; 70:31-41. 

  29. Calder PC. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot Essent Fatty Acids 2008;79:101-108. 

  30. Gertsik L, Poland RE, Bresee C, Rapaport MH. Omega-3 fatty acid augmentation of citalopram treatment for patients with major depressive disorder. J Clin Psychopharmacol 2012;32:61-64. 

  31. Jazayeri S, Tehrani-Doost M, Keshavarz SA, Hosseini M, Djazayery A, Amini H, et al. Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder. Aust N Z J Psychiatry 2008; 42:192-198. 

  32. Peet M, Horrobin DF. A dose-ranging study of the effects of ethyleicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Arch Gen Psychiatry 2002;59:913-919. 

  33. Seo HJ, Wang SM, Han C, Lee SJ, Patkar AA, Masand PS, et al. Curcumin as a putative antidepressant. Expert Rev Neurother 2015;15: 269-280. 

  34. Lopresti AL, Hood SD, Drummond PD. Multiple antidepressant potential modes of action of curcumin: a review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. J Psychopharmacol 2012;26:1512-1524. 

  35. Lopresti AL, Maes M, Maker GL, Hood SD, Drummond PD. Curcumin for the treatment of major depression: a randomised, doubleblind, placebo controlled study. J Affect Disord 2014;167:368-375. 

  36. Sanmukhani J, Anovadiya A, Tripathi CB. Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: an acute and chronic study. Acta Pol Pharm 2011;68: 769-775. 

  37. Bergman J, Miodownik C, Bersudsky Y, Sokolik S, Lerner PP, Kreinin A, et al. Curcumin as an add-on to antidepressive treatment: a randomized, double-blind, placebo-controlled, pilot clinical study. Clin Neuropharmacol 2013;36:73-77. 

  38. Sanmukhani J, Satodia V, Trivedi J, Patel T, Tiwari D, Panchal B, et al. Efficacy and safety of curcumin in major depressive disorder: a randomized controlled trial. Phytother Res 2014;28:579-585. 

  39. Levine J, Cholestoy A, Zimmerman J. Possible antidepressant effect of minocycline. Am J Psychiatry 1996;153:582. 

  40. Mello BS, Monte AS, McIntyre RS, Soczynska JK, Custodio CS, Cordeiro RC, et al. Effects of doxycycline on depressive-like behavior in mice after lipopolysaccharide (LPS) administration. J Psychiatr Res 2013;47:1521-1529. 

  41. Savitz J, Preskorn S, Teague TK, Drevets D, Yates W, Drevets W. Minocycline and aspirin in the treatment of bipolar depression: a protocol for a proof-of-concept, randomised, double-blind, placebocontrolled, 2x2 clinical trial. BMJ Open 2012;2:e000643. 

  42. ClinicalTrials.gov [homepage on the Internet]. Open Study Assessing the Feasibility of Minocycline in Patients With Unipolar Depression [updated 2012 Jul 3; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01574742. 

  43. ClinicalTrials.gov [homepage on the Internet]. Minocycline and Aspirin in the Treatment of Bipolar Depression (Minocycline) [updated 2015 Oct 28; cited 2011 Mar 28]. Available from: http://clinicaltrials.gov/ct2/show/NCT01429272. 

  44. ClinicalTrials.gov [homepage on the Internet]. Minocycline for Bipolar Depression [updated 2015 Aug 4; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01514422. 

  45. ClinicalTrials.gov [homepage on the Internet]. Evaluating the Efficacy of Adjunctive Minocycline for the Treatment of Bipolar Depression [updated 2015 Jul 25; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01403662. 

  46. Rawdin BJ, Mellon SH, Dhabhar FS, Epel ES, Puterman E, Su Y, et al. Dysregulated relationship of inflammation and oxidative stress in major depression. Brain Behav Immun 2013;31:143-152. 

  47. Anderson G, Berk M, Dean O, Moylan S, Maes M. Role of immuneinflammatory and oxidative and nitrosative stress pathways in the etiology of depression: therapeutic implications. CNS Drugs 2014;28:1-10. 

  48. Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 2003;66:1499-1503. 

  49. Aboul-Fotouh S. Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed rats. Pharmacol Biochem Behav 2013; 104:105-112. 

  50. Morris G, Anderson G, Berk M, Maes M. Coenzyme Q10 depletion in medical and neuropsychiatric disorders: potential repercussions and therapeutic implications. Mol Neurobiol 2013;48:883-903. 

  51. Acuna-Castroviejo D, Martin M, Macias M, Escames G, Leon J, Khaldy H, et al. Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res 2001;30:65-74. 

  52. Lee SY, Lee SJ, Han C, Patkar AA, Masand PS, Pae CU. Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2013;46:224-235. 

  53. Berk M, Malhi GS, Gray LJ, Dean OM. The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci 2013;34:167-177. 

  54. Berk M, Dean OM, Cotton SM, Jeavons S, Tanious M, Kohlmann K, et al. The efficacy of adjunctive N-acetylcysteine in major depressive disorder: a double-blind, randomized, placebo-controlled trial. J Clin Psychiatry 2014;7:628-636. 

  55. Soczynska JK, Mansur RB, Brietzke E, Swardfager W, Kennedy SH, Woldeyohannes HO, et al. Novel therapeutic targets in depression: minocycline as a candidate treatment. Behav Brain Res 2012;235:302-317. 

  56. Janowsky DS, Risch C, Parker D, Huey L, Judd L. Increased vulnerability to cholinergic stimulation in affective-disorder patients [proceedings]. Psychopharmacol Bull 1980;16:29-31. 

  57. Dilsaver SC. Pharmacologic induction of cholinergic system up-regulation and supersensitivity in affective disorders research. J Clin Psychopharmacol 1986;6:65-74. 

  58. Rami A, Krieglstein J. Muscarinic-receptor antagonist scopolamine rescues hippocampal neurons from death induced by glutamate. Brain Res 1998;788:323-326. 

  59. Drevets WC, Zarate CA Jr, Furey ML. Antidepressant effects of the muscarinic cholinergic receptor antagonist scopolamine: a review. Biol Psychiatry 2013;73:1156-1163. 

  60. Kasper S, Moises HW, Beckmann H. The anticholinergic biperiden in depressive disorders. Pharmacopsychiatria 1981;14:195-198. 

  61. Furey ML, Drevets WC. Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 2006;63:1121-1129. 

  62. Drevets WC, Furey ML. Replication of scopolamine's antidepressant efficacy in major depressive disorder: a randomized, placebocontrolled clinical trial. Biol Psychiatry 2010;67:432-438. 

  63. Khajavi D, Farokhnia M, Modabbernia A, Ashrafi M, Abbasi SH, Tabrizi M, et al. Oral scopolamine augmentation in moderate to severe major depressive disorder: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry 2012;73:1428-1433. 

  64. ClinicalTrials.gov [homepage on the Internet]. Ketamine and Scopolamine Infusions for Treatment-resistant Major Depressive Disorder [updated 2015 Jan 26; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01613820. 

  65. Philip NS, Carpenter LL, Tyrka AR, Price LH. Nicotinic acetylcholine receptors and depression: a review of the preclinical and clinical literature. Psychopharmacology (Berl) 2010;212:1-12. 

  66. George TP, Sacco KA, Vessicchio JC, Weinberger AH, Shytle RD. Nicotinic antagonist augmentation of selective serotonin reuptake inhibitor-refractory major depressive disorder: a preliminary study. J Clin Psychopharmacol 2008;28:340-344. 

  67. Philip NS, Carpenter LL, Tyrka AR, Whiteley LB, Price LH. Varenicline augmentation in depressed smokers: an 8-week, open-label study. J Clin Psychiatry 2009;70:1026-1031. 

  68. McAllister-Williams RH, Ferrier IN, Young AH. Mood and neuropsychological function in depression: the role of corticosteroids and serotonin. Psychol Med 1998;28:573-584. 

  69. Jahn H, Schick M, Kiefer F, Kellner M, Yassouridis A, Wiedemann K. Metyrapone as additive treatment in major depression: a double-blind and placebo-controlled trial. Arch Gen Psychiatry 2004;61:1235-1244. 

  70. ClinicalTrials.gov [homepage on the Internet]. Antiglucocorticoid Augmentation of antiDepressants in Depression (ADD) [updated 2014 Jul 16; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01375920. 

  71. Cardoso C, Kingdon D, Ellenbogen MA. A meta-analytic review of the impact of intranasal oxytocin administration on cortisol concentrations during laboratory tasks: moderation by method and mental health. Psychoneuroendocrinology 2014;49:161-170. 

  72. ClinicalTrials.gov [homepage on the Internet]. Oxytocin and Tibolone Adjuncts in Treatment Resistant Depression-A Pilot Study [updated 2012 Jan 15; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01239888. 

  73. Hashimoto K. Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res Rev 2009;61:105-123. 

  74. Hashimoto K. The role of glutamate on the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1558-1568. 

  75. Abelaira HM, Reus GZ, Neotti MV, Quevedo J. The role of mTOR in depression and antidepressant responses. Life Sci 2014;101:10-14. 

  76. McGirr A, Berlim MT, Bond DJ, Fleck MP, Yatham LN, Lam RW. A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychol Med 2015;45:693-704. 

  77. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006;63:856-864. 

  78. ClinicalTrials.gov [homepage on the Internet]. Double-Blind, Placebo-Controlled Trial of Ketamine Therapy in Treatment-Resistant Depression (TRD) [updated 2015 Aug 18; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01920555. 

  79. ClinicalTrials.gov [homepage on the Internet]. Intranasal Ketamine in Treatment-Resistant Depression [updated 2014 Nov 17; cited 2011 Mar 28]. Available from: http://clinicaltrials.gov/ct2/show/NCT01304147. 

  80. ClinicalTrials.gov [homepage on the Internet]. Treatment Resistant Depression (Pilot) [updated 2015 Nov 17; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01179009. 

  81. ClinicalTrials.gov [homepage on the Internet]. Optimization of IV Ketamine for Treatment Resistant Depression [updated 2013 Dec 27; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT00768430. 

  82. ClinicalTrials.gov [homepage on the Internet]. Action of Ketamine in Treatment-Resistant Depression [updated 2014 May 6; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01-945047. 

  83. ClinicalTrials.gov [homepage on the Internet]. A Study of Ketamine in Patients With Treatment-resistant Depression [updated 2015 Feb 2; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/ NCT01627782. 

  84. ClinicalTrials.gov [homepage on the Internet]. Ketamine Infusion for Treatment-resistant Major Depressive Disorder [updated 2015 Apr 6; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01582945. 

  85. Owen RT. Glutamatergic approaches in major depressive disorder: focus on ketamine, memantine and riluzole. Drugs Today (Barc) 2012;48:469-478. 

  86. Zarate CA Jr, Payne JL, Quiroz J, Sporn J, Denicoff KK, Luckenbaugh D, et al. An open-label trial of riluzole in patients with treatment-resistant major depression. Am J Psychiatry 2004;161:171-174. 

  87. Sanacora G, Kendell SF, Levin Y, Simen AA, Fenton LR, Coric V, et al. Preliminary evidence of riluzole efficacy in antidepressant-treated patients with residual depressive symptoms. Biol Psychiatry 2007; 61:822-825. 

  88. ClinicalTrials.gov [homepage on the Internet]. Efficacy and Tolerability of Riluzole in Treatment Resistant Depression [updated 2015 Feb 2; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT01204918. 

  89. Preskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol 2008;28:631-637. 

  90. Zarate CA Jr, Mathews D, Ibrahim L, Chaves JF, Marquardt C, Ukoh I, et al. A randomized trial of a low-trapping nonselective Nmethyl-D-aspartate channel blocker in major depression. Biol Psychiatry 2013;74:257-264. 

  91. ClinicalTrials.gov [homepage on the Internet]. D-cycloserine for Major Depressive Disorder [updated 2012 Aug 2; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT00408031. 

  92. ClinicalTrials.gov [homepage on the Internet]. Safety and Efficacy of EVT 101 in Treatment-Resistant Depression [updated 2016 Jan 4; cited 2015 Dec 31]. Available from: https://clinicaltrials.gov/ct2/show/NCT01128452?termNCT01128452.&rank1. 

  93. ClinicalTrials.gov [homepage on the Internet]. Single IV Dose of GLYX-13 in Patients With Treatment-Resistant Depression [updated 2012 Sep 10; cited 2015 Dec 31]. Available from: https://clinicaltrials.gov/ct2/show/NCT01234558. 

  94. Nations KR, Bursi R, Dogterom P, Ereshefsky L, Gertsik L, Mant T, et al. Maximum tolerated dose evaluation of the AMPA modulator Org 26576 in healthy volunteers and depressed patients: a summary and method analysis of bridging research in support of phase II dose selection. Drugs R D 2012;12:127-139. 

  95. Tokita K, Yamaji T, Hashimoto K. Roles of glutamate signaling in preclinical and/or mechanistic models of depression. Pharmacol Biochem Behav 2012;100:688-704. 

  96. ClinicalTrials.gov [homepage on the Internet]. MARIGOLD Study: A Study of RO4917523 Versus Placebo as Adjunctive Therapy in Patients With Major Depressive Disorder and an Inadequate Response to Ongoing Antidepressant Therapy [updated 2016 Feb 1; cited 2015 Dec 31]. Available from: http://clinicaltrials.gov/ct2/show/NCT-01437657. 

  97. Berrocoso E, Sanchez-Blazquez P, Garzon J, Mico JA. Opiates as antidepressants. Curr Pharm Des 2009;15:1612-1622. 

  98. Tenore PL. Psychotherapeutic benefits of opioid agonist therapy. J Addict Dis 2008;27:49-65. 

  99. Lutz PE, Kieffer BL. Opioid receptors: distinct roles in mood disorders. Trends Neurosci 2013;36:195-206. 

  100. Torregrossa MM, Isgor C, Folk JE, Rice KC, Watson SJ, Woods JH. The delta-opioid receptor agonist (+)BW373U86 regulates BDNF mRNA expression in rats. Neuropsychopharmacology 2004;29:649-659. 

  101. Torregrossa MM, Jutkiewicz EM, Mosberg HI, Balboni G, Watson SJ, Woods JH. Peptidic delta opioid receptor agonists produce antidepressant-like effects in the forced swim test and regulate BDNF mRNA expression in rats. Brain Res 2006;1069:172-181. 

  102. Zhang H, Shi YG, Woods JH, Watson SJ, Ko MC. Central kappaopioid receptor-mediated antidepressant-like effects of nor-Binaltorphimine: behavioral and BDNF mRNA expression studies. Eur J Pharmacol 2007;570:89-96. 

  103. Gerra G, Borella F, Zaimovic A, Moi G, Bussandri M, Bubici C, et al. Buprenorphine versus methadone for opioid dependence: predictor variables for treatment outcome. Drug Alcohol Depend 2004;75:37-45. 

  104. Bodkin JA, Zornberg GL, Lukas SE, Cole JO. Buprenorphine treatment of refractory depression. J Clin Psychopharmacol 1995;15: 49-57. 

  105. Karp JF, Butters MA, Begley AE, Miller MD, Lenze EJ, Blumberger DM, et al. Safety, tolerability, and clinical effect of low-dose buprenorphine for treatment-resistant depression in midlife and older adults. J Clin Psychiatry 2014;75:e785-e793. 

  106. ClinicalTrials.gov [homepage on the Internet]. Buprenorphine for Treatment Resistant Depression (BUP-TRD) [updated 2014 Jan 17; cited 2015 Dec 31]. Available from: https://clinicaltrials.gov/ct2/show/NCT01407575?termNCT01407575&rank1. 

  107. Holmes A, Heilig M, Rupniak NM, Steckler T, Griebel G. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 2003;24:580-588. 

  108. Rosenkranz MA. Substance P at the nexus of mind and body in chronic inflammation and affective disorders. Psychol Bull 2007; 133:1007-1037. 

  109. Blier P, Gobbi G, Haddjeri N, Santarelli L, Mathew G, Hen R. Impact of substance P receptor antagonism on the serotonin and norepinephrine systems: relevance to the antidepressant/anxiolytic response. J Psychiatry Neurosci 2004;29:208-218. 

  110. Rupniak NM. Elucidating the antidepressant actions of substance P (NK1 receptor) antagonists. Curr Opin Investig Drugs 2002;3:257-261. 

  111. Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 1998;281:1640-1645. 

  112. Kramer MS, Winokur A, Kelsey J, Preskorn SH, Rothschild AJ, Snavely D, et al. Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacology 2004;29:385-392. 

  113. Keller M, Montgomery S, Ball W, Morrison M, Snavely D, Liu G, et al. Lack of efficacy of the substance p (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry 2006;59:216-223. 

  114. Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D, et al. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 1998; 50:143-150. 

  115. Jolicoeur FB, Bouali SM, Fournier A, St-Pierre S. Mapping of hypothalamic sites involved in the effects of NPY on body temperature and food intake. Brain Res Bull 1995;36:125-129. 

  116. Antonijevic IA, Murck H, Bohlhalter S, Frieboes RM, Holsboer F, Steiger A. Neuropeptide Y promotes sleep and inhibits ACTH and cortisol release in young men. Neuropharmacology 2000;39:1474- 1481. 

  117. Heilig M, McLeod S, Brot M, Heinrichs SC, Menzaghi F, Koob GF, et al. Anxiolytic-like action of neuropeptide Y: mediation by Y1 receptors in amygdala, and dissociation from food intake effects. Neuropsychopharmacology 1993;8:357-363. 

  118. Redrobe JP, Dumont Y, Fournier A, Quirion R. The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test. Neuropsychopharmacology 2002;26:615-624. 

  119. Sajdyk TJ, Schober DA, Smiley DL, Gehlert DR. Neuropeptide Y-Y2 receptors mediate anxiety in the amygdala. Pharmacol Biochem Behav 2002;71:419-423. 

  120. Vezzani A, Sperk G, Colmers WF. Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci 1999;22:25-30. 

  121. Stogner KA, Holmes PV. Neuropeptide-Y exerts antidepressantlike effects in the forced swim test in rats. Eur J Pharmacol 2000; 387:R9-R10. 

  122. Antunes MS, Ruff JR, de Oliveira Espinosa D, Piegas MB, de Brito ML, Rocha KA, et al. Neuropeptide Y administration reverses tricyclic antidepressant treatment-resistant depression induced by ACTH in mice. Horm Behav 2015;73:56-63. 

  123. Serova LI, Laukova M, Alaluf LG, Pucillo L, Sabban EL. Intranasal neuropeptide Y reverses anxiety and depressive-like behavior impaired by single prolonged stress PTSD model. Eur Neuropsychopharmacol 2014;24:142-147. 

  124. ClinicalTrials.gov [homepage on the Internet]. Intranasal Administration of Neuropeptide Y in Healthy Male Volunteers (NPY) [updated 2012 Dec 10; cited 2015 Dec 31]. Available from: https://clinicaltrials.gov/ct2/show/NCT00748956?termNCT00748956.&rank1. 

  125. ClinicalTrials.gov [homepage on the Internet]. A Dose Escalation Study of Intranasal Neuropeptide Y in Post Traumatic Stress Disorder (PTSD) [updated 2015 Sep 21; cited 2015 Dec 31]. Available from: https://clinicaltrials.gov/ct2/show/NCT01533519?termNCT 01533519.&rank1. 

  126. Lu X, Sharkey L, Bartfai T. The brain galanin receptors: targets for novel antidepressant drugs. CNS Neurol Disord Drug Targets 2007; 6:183-192. 

  127. Wrenn CC, Crawley JN. Pharmacological evidence supporting a role for galanin in cognition and affect. Prog Neuropsychopharmacol Biol Psychiatry 2001;25:283-299. 

  128. Kuteeva E, Hokfelt T, Wardi T, Ogren SO. Galanin, galanin receptor subtypes and depression-like behaviour. Cell Mol Life Sci 2008; 65:1854-1863. 

  129. Kuteeva E, Wardi T, Hokfelt T, Ogren SO. Galanin enhances and a galanin antagonist attenuates depression-like behaviour in the rat. Eur Neuropsychopharmacol 2007;17:64-69. 

  130. Kuteeva E, Wardi T, Lundstrom L, Sollenberg U, Langel U, Hokfelt T, et al. Differential role of galanin receptors in the regulation of depression-like behavior and monoamine/stress-related genes at the cell body level. Neuropsychopharmacology 2008;33:2573-2585. 

  131. Swanson CJ, Blackburn TP, Zhang X, Zheng K, Xu ZQ, Hokfelt T, et al. Anxiolytic- and antidepressant-like profiles of the galanin-3 receptor (Gal3) antagonists SNAP 37889 and SNAP 398299. Proc Natl Acad Sci U S A 2005;102:17489-1794. 

  132. Lu X, Barr AM, Kinney JW, Sanna P, Conti B, Behrens MM, et al. A role for galanin in antidepressant actions with a focus on the dorsal raphe nucleus. Proc Natl Acad Sci U S A 2005;102:874-879. 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로