$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고속도로 돌발상황 검지를 위한 삼연속검지기 단순화 해법의 통계적 적합성 검정
A Statistical Fitness Test of Newell's 3-detector Simplification Method for Unexpected Incident Detection in the Expressway Traffic Flow 원문보기

大韓交通學會誌 = Journal of Korean Society of Transportation, v.34 no.2, 2016년, pp.146 - 157  

오창석 (감사원 감사연구원) ,  노정현 (한양대학교 도시대학원) ,  박영욱 (한국스마트카드(주))

초록
AI-Helper 아이콘AI-Helper

본 연구는 Daganzo가 돌발상황 검지를 위해 1997년에 제안한 삼연속 검지기 단순화 해법을 통계적 모형으로 구현하고 이에 대한 통계적 적합성 검증을 목적으로 한다. 본 연구는 삼연속 검지기 단순화 해법의 계산과정을 정리하였으며, 이를 통계 프로그래밍을 활용해 구현하였다. 먼저 진출입부가 존재하지 않는 고속도로 본선의 검지기 자료를 활용하여 본 해법을 적용하였다. 그리고 삼연속 검지기 단순화 해법의 통계적 검정을 위해 충격파에 의한 교통량의 동적 변화를 반영하는 30초 단위 누적교통량을 돌발상황 교통류와 정상 교통류 각각에 대해 추정하고, 실측 누적교통량과의 오차를 통계적으로 비교하였다. 오차검정 결과 돌발상황 검지기법을 통한 누적교통량 추정치는 통계적으로 실측치와 적합성이 높게 나타났으며, 오차 값의 유의성은 사고로 인한 돌발상황 교통류가 정상 교통류에 비해 분산 및 평균이 이질적인 것으로 나타났다. 본 연구는 기존 Newell, Daganzo의 단순화 교통류 모형의 이론적 연구를 돌발상황 검지로 응용 발전시킨 연구이며, 나아가 다양한 도로조건과 돌발상황 유형에서의 실험을 통한 모형 개선을 향후 과제로 한다.

Abstract AI-Helper 아이콘AI-Helper

The objective of this study is to actualize a statistical model of the 3-detector simplification model, which was proposed to detect outbreak situations by Daganzo in 1997 and to verify the statistical appropriacy thereof. This study presents the calculation process of the 3-detector simplification ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • First, in this study, the CTFM is applied instead of the others detection methods of incidents, which enables estimating 30-seconds of cumulative traffic flows, in each of the incident and steady traffic flow, reflecting the dynamic changes in the traffic volume caused by shock waves. Also, the estimated outcomes could be the traffic flows of higher actual data and the statistical feasibility.
  • In order to collect the actual data, we used the Freeway Traffic Management System(FTMS) data within OASIS of the Korea Expressway Corporation. First, the data regarding accidents with trucks around Anseong, Gyeongbu Expressway(326km away from endpoint Busan) were collected to identify the conditions related to the accident, spots of accidents and time points. The data came from a time around 9 am, on Thursday 18th of September, 2003, based on the accident data.
  • In this study, it is assumed that the CTFM, suggested by Newell, is applied on the Cumulative Traffic Flow, which reflects the characteristics of dynamic traffic flows in the actual traffic environment, based on the data provided by the Korea Expressway Corporation's FTMS. In order to verify the feasibility of the assumed cumulative traffic flow, the errors in the Cumulative Traffic Flow were statistically analyzed and, based on the verification of heteroscedasticity of errors in cumulative traffic flows that was revealed from the central detector application between the steady flow and the incident-involved traffic flow, the study suggests a method of detecting all traffic flows involving the incidents, which differ statistically from the steady flows. The results of this study can be summarized as follows.
  • In this study, it is assumed that the CTFM, suggested by Newell, is applied on the Cumulative Traffic Flow, which reflects the characteristics of dynamic traffic flows in the actual traffic environment, based on the data provided by the Korea Expressway Corporation's FTMS.
  • Such result helped the authors to prove the statistical suitability of the NTSM. Second, based on the estimation Cumulative Traffic Flow as a variable to determine an incident, it was able to generally explore the traffic flow as an incident variable under the unexpected incidents, based on the changes in statistical errors in cumulative traffic flows. Based on the analytic results, the maximum error (8%) occurred around 11 o'clock, 2-3 hours after the accident.
  • In order to derive the possible successive studies, first, there is a necessity for the calculation and settling based on continued studies and on-site data, for establishing an appropriate critical value to detect an incident accurately. Second, the boundary of the incidents on some of the closed zones on the Gyeongbu Expressway has caused difficulties in extracting the optimum data and the basic assumptions in this study to assume the traffic volumes. Thus there is a necessary for a continuous verification of the models pertaining to various incidents in broader range of time and space conditions, as well as the environmental variables.
  • The Newell's 3-detector Simplification Method(NTSM) justified by Daganzo(1997) is applied in this study for detecting unexpected incidents. The applied method of detecting incidents in this study has variables, such as, the cumulative traffic flow with relatively less errors than the other attributes of traffic flows, and it enables to get prepared for detector data errors, which occur easily in high-density and highly occupied traffic flows, and provides the mathematical approach techniques. This presents the clear theoretical backgrounds and covers the flow of shock waves in the calculation process, providing an advantage of reflecting the actual network of the environment of dynamic traffic flows.
  • Figure 4 differs for its axis of ordinates is composed of vehicles, while Figure 5 and 6's axis or ordinates are composed of percent values. The index idea for this study is to measure the difference in normal flow and accident flow by a certain unit(1 hour for this study) after measuring the percent unit of the error rate for accumulation traffic.

대상 데이터

  • The data came from a time around 9 am, on Thursday 18th of September, 2003, based on the accident data. The analytic space covers 362.3-371.8km(approximately, 10km) from Busan, with reference to the highway distance in a time range from 8 am to 15 pm, including the moment of accident. The time range of steady traffic flows subject to a comparative analysis was between 8 AM and 15 PM, on Thursday, 25th of September, 2003, the same weekday and time range.

데이터처리

  • The statistical values for the verification of suitability of the estimated and actually measured cumulative traffic values of the center were applied, based on the NTSM, Mean Percentage Square Error(MPSE), Root Mean Square Error(RMSE) and Theil's Inequality Coefficient.

이론/모형

  • In order to detect such unexpected incidents, this study aims to describe the 3-detector simplification model, proven by Daganzo(1997), in a statistical model and to verify the statistical appropriacy thereof. The Newell's 3-detector Simplification Method(NTSM) justified by Daganzo(1997) is applied in this study for detecting unexpected incidents.
  • The 3-detector simplification model used in this study was derived from an idea on the difference in density of traffics in an outbreak situation and a steady flow, which ultimately influence the relationship between traffic and density, having an impact on the traffic of the central detector of the 3-detector. Once an outbreak situation occurs, the shock wave will cause a fluctuation of density, resulting in a large error in measured accumulative traffic compared to the predicted.
  • The Newell's 3-detector Simplification Method(NTSM) justified by Daganzo(1997) is applied in this study for detecting unexpected incidents.
본문요약 정보가 도움이 되었나요?

참고문헌 (9)

  1. Ahmed F., Hawas Y. E. (2012), A Threshold-Based Real Time Incident Detection Systems for Urban Traffic Networks, Procedia - Social and Behavioral Sciences 48, 1713-1722. 

  2. Daganzo C. F. (1997), Fundamentals of Transportation and Traffic Operations, Pergamon, 106-125. 

  3. Hojati A. T., Ferreira L., Washington S., Charles P., Shobeirinejad A. (2014), Modelling Total Duration of Traffic Incidents Including Incident Detection and Recovery Time, Accident Analysis and Prevention 71, 296-305. 

  4. Kinoshita A., Takasu A., Adachi J. (2015), Real-time Traffic Incident Detection Using a Probabilistic Topic Model, Information Systems 54, 169-188. 

  5. Knoop V. L., Hoogendoorn S. P., van Zuylen H. J. (2008), Capacity Reduction at Incidents: Empirical Data Collected From a Helicopter, Transportation Research Record: Journal of the Transportation Research Board, 2071, 19-5. 

  6. Lu J., Chen S., Wang W., van Zuylen H. (2012), A Hybrid Model of Partial Least Squares and Neural Network for Traffic Incident Detection, Expert Systems With Applications 39 , 4775-4784. 

  7. Newell G. F. (1993), A Simplified Theory of Kinematic Waves in Highway Traffic, Part I. General Theory, Transportation Research Part B 27(4), 281-287. 

  8. Sinha P., Mohammed Hadi P. E., Amy Wang E. I. (2007), Modeling Reductions in Freeway Capacity due to Incidents in Microscopic Simulation Models, In Proceedings of 86th Annual Meeting of the Transportation Research Board, Washington D.C. 

  9. Willersrud A., Blanke M., Imsland L. (2015) Incident Detection and Isolation in Drilling Using Analytical Redundancy Relations, Control Engineering Practice 41, 1-12. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로