$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한 바퀴 밸런싱 로봇의 조향 안정화를 위한 외란관측기 설계 및 실험 연구
Experimental Study and Design of a Disturbance Observer for Steering Stabilization of a One-wheeled Balancing Robot 원문보기

제어·로봇·시스템학회 논문지 = Journal of institute of control, robotics and systems, v.22 no.5, 2016년, pp.353 - 360  

이상덕 (충남대학교 메카트로닉스공학과) ,  정슬 (충남대학교 메카트로닉스공학과)

Abstract AI-Helper 아이콘AI-Helper

In this paper, a DOB (disturbance observer) is designed for the steering stabilization of one-wheeled balancing robot. Based on the simple stick model of the single-wheeled robot, DOBs and the corresponding Q filters are designed. Although the proposed models are simple, DOBs are desired to deal wit...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 DOB 기반의 PD 제어 방법을 제안한다. 제안하는 제어기의 구조는 그림 13과 같다.
  • 본 논문에서는 한 바퀴 로봇의 균형제어를 하기 위한 조향의 안정성을 향상시키기 위해 외란관측기 기반의 제어방법을 제안하였다. 논문에서 제시한 로봇은 조향에 대한 직접적인 구동기가 없는 상태이기 때문에 조향의 모션을 안정화시킬 수 있는 방법으로 외란관측기를 이용한 모델의 불확정성 보상 방법을 제안하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (29)

  1. F. A. Frederick, "Scaled control moment gyroscope dynamics effects on performance," Acta Astronautica, vol. 110, pp. 77-88, 2015. 

  2. B. Han, S. Zheng, and Z. Wang, "Design, modeling, fabrication, and test of a large-scale single-gimbal magnetically suspended control moment gyro," IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7424-7435, 2015. 

  3. V. J. Lappas, W. H. Steyn, and C. I. Underwood, "Attitude control for small satellites using control moment gyros," Acta Astronautica, vol. 51, no. 1, pp. 101-111, 2002. 

  4. Z. Ismail and R. Varatharajoo, "A study of reaction wheel configurations for a 3-axis satellite attitude control," Advances in Space Research, vol. 45, no. 6, pp. 750-759, 2010. 

  5. B. Xiao, M. Huo, X. Yang, and Y. Zhang, "Fault-tolerant attitude stabilization for satellites without rate sensor," IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 7191-7202, 2015. 

  6. E. Mumm, K. Davis, M. Mahin, and D. Neal, "Miniature control moment gyroscope development," IEEE Aerospace Conference, pp. 1-9, 2014. 

  7. S. D. Lee and S. Jung, "Analysis of relationship between body and gimbal motion through experiment of a single-wheel robot based on an inverse gyroscopic effect," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 21, no. 11, pp. 1064-1069, 2015. 

  8. S. D. Lee and S. Jung, "Experimental verification of stability region of balancing a single-wheel robot: an inverted stick model approach," Proc. of IECON 2015 41th Annual Conference of the IEEE, Yokohama, Japan, pp. 4556-4561, 2015. 

  9. H. Jin, J. Hwang, and J. Lee, "A balancing control strategy for a one wheel pendulum robot based on dynamic model decomposition: Simulations and experiments," IEEE/ASME Trans. on Mechatronics, vol. 16, no. 4, pp. 763-768, 2011. 

  10. J. Lee, S. Han, and J. Lee, "Decoupled dynamic control for pitch and roll axes of the unicycle robot," IEEE Trans. on Industrial Electronics, vol. 60, no. 9, pp. 3814-3822, 2013. 

  11. J. H. Lee and H. J. Shin, and S. Jung, "Balancing control of a unicycle robot using ducted fans," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 20, no. 9, pp. 895-899, 2014. 

  12. K. J. Astrom and B. Wittenmark, Adaptive Control, Courier Corporation, 2013. 

  13. A. E. Bryson, Applied Optimal Control: Optimization, Estimation and Control, CRC Press., 1975. 

  14. G. Hostetter and J. Meditch, "On the generalization of observers to systems with unmeasurable, unknown inputs," Automatica, vol. 9, no. 6, pp. 721-724, 1973. 

  15. E. Schrijver and J. V. Dijk, "Disturbance observers for rigid mechanical systems: equivalence, stability, and design," Journal of Dynamic Systems, Measurement, and Control, vol. 124, no. 4, pp. 539-548, 2002. 

  16. D. Xing, J. Su, Y. Liu, and J. Zhong, "Robust approach for humanoid joint control based on a disturbance observer," IET Control Theory Application, vol. 5, no. 14, pp. 1630-1636, 2011. 

  17. X. Chen, S. Komada, and T. Fukuda, "Design of a nonlinear disturbance observer," IEEE Trans. Industrial Electronics, vol. 47, no. 2, pp. 429-437, 2000. 

  18. M. Ruderman, "Tracking control of motor drives using feedforward friction observer," IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3727-3735, 2014. 

  19. M. Ruderman and M. Iwasaki, "Observer of nonlinear friction dynamics for motion control," IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5941-5949, 2015. 

  20. S. Jung, "An impedance force control approach to a quad-rotor system based on an acceleration-based disturbance observer," Journal of Intelligent Robot System, vol. 73, no. 1, pp. 175-185, 2014. 

  21. T. Murakami, F. Yu, and K. Ohnishi, "Torque sensorless control in multidegree-of-freedom manipulator," IEEE Transactions on Industrial Electronics, vol. 40, no. 2, pp. 259-265, 1993. 

  22. E. Sariyildiz and K. Ohnishi, "On the explicit robust force control via disturbance observer," IEEE Trans. on Industrial Electronics, vol. 62, no. 3, pp. 1581-1589, 2015. 

  23. S. Katsura, Y. Matsumoto, and K. Ohnishi, "Modeling of force sensing and validation of disturbance observer for force control," IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 530-538, 2007. 

  24. Y. Ohba K. Ohishi, S. Katsura, Y. Yoshizawa, and K. Majima, "Sensorless force control for injection molding machine using reaction torque observer considering torsion phenomenon," IEEE Trans. on Industrial Electronics, vol. 56, no. 8, pp. 2955-2960, 2009. 

  25. S. B. Cardini, "A history of the monocycle-stability and control from inside the wheel," IEEE Control Systems Magazine, vol. 26, no. 5, pp. 22-26, 2006. 

  26. L. Morine, T. O'Connor, J. Carnazza, H. Varner, and D. Pool, "Control moment gyroscope gimbal actuator study," The Bendix Corporation EclUpse-Pioneer Divisirn Teterboro, New Jersej, 1966. 

  27. E. Mumm, K. Davis, M. Mahin, and D. Neal, "Miniature control moment gyroscope development," IEEE Aerospace Conference, pp. 1-9, 2014. 

  28. S. P. Bhat and P. K. Tiwari, "Controllability of spacecraft attitude using control moment gyroscopes," IEEE Trans. on Automatic Control, vol. 54, no. 3, pp. 585-590, 2009. 

  29. C. J. Kempf and S. Kobayashi, "Disturbance observer and feedforward design for a high-speed direct-drive positioning table," IEEE Trans. on Control System Technology, vol. 7, no. 5, pp. 513-526, 1999. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로