$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

An Intraoral Miniature X-ray Tube Based on Carbon Nanotubes for Dental Radiography 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.48 no.3, 2016년, pp.799 - 804  

Kim, Hyun Jin (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ,  Kim, Hyun Nam (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ,  Raza, Hamid Saeed (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ,  Park, Han Beom (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ,  Cho, Sung Oh (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray targ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The CNT emitter was installed inside a focusing electrode, which prevents the divergence of an electron beam generated at the CNT emitter. The geometrical shape of the focusing electrode was optimized by calculating electron trajectories from the CNT emitter to the X-ray target with an EGN2 code (GA and WB Hermannsfeldt, Los Altos, CA, USA) [22]. The X-ray target has a conical-shaped transmission type.

대상 데이터

  • An alumina ceramic tube, with an inner diameter of 5 mm, an outer diameter of 7 mm, and a length of 30 mm, was used for high-voltage insulation between the cathode assembly and the X-ray target. The focusing electrode, the ceramic tube, and the X-ray target were tightly assembled in a brazing furnace.
  • The miniature X-ray tube has a diode structure, which consists of a CNT emitter as a cathode and an X-ray target as an anode. The CNT emitter was fabricated by attaching single-walled CNTs (model: CNT SP95, Carbon Nano-material Technology Co., Pohang, South Korea) to a 0.8-mm copper wire substrate using metal nanoparticles as a binder [20,21]. The CNT emitter was installed inside a focusing electrode, which prevents the divergence of an electron beam generated at the CNT emitter.

이론/모형

  • The collimator also shields unwanted X-rays. The required thickness of the collimator to block unwanted X-rays was determined by calculating the X-ray dose rate using Monte Carlo N-Particle Transport code [18]. The tube voltage is 50 kV and the electron beam current is 200 mA in the calculation.
  • The X-ray target has a conical-shaped transmission type. The shape of the target was designed to produce X-rays over large angles with the use of Monte Carlo N-Particle Transport code [23]. The transmission-type target was prepared by coating tungsten, at a thickness of approximately 1.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. L. Li, Z. Chen, Z. Zhao, D. Wu, X-ray digital intra-oral tomosynthesis for quasi-three-dimensional imaging: system, reconstruction algorithm, and experiments, Opt. Eng. 52 (2013) 013201. 

  2. K. de Faria Vasconcelos, K.M. Evangelista, C.D. Rodrigues, C. Estrela, T.O. de Sousa, M.A.G. Silva, Detection of periodontal bone loss using cone beam CT and intraoral radiography, Dentomaxillofac. Radiol. 41 (2012) 64-69. 

  3. N.S. Venkatesh Babu, P. Patel, Comparative evaluation of extraoral and intraoral periapical radiographic technique in children, Int. J. Sci. Stud. 2 (2015) 6-11. 

  4. N. Bagis, M.E. Kolsuz, S. Kursun, K. Orhan, Comparison of intraoral radiography and cone-beam computed tomography for the detection of periodontal defects: an in vitro study, BMC Oral Health 15 (2015) 64. 

  5. R. Kumar, N. Khambete, E. Priya, Extraoral periapical radiography: an alternative approach to intraoral periapical radiography, Imaging Sci. Dent. 41 (2011) 161-165. 

  6. T. Tokuyasu, M. Yamamoto, K. Okamura, K. Yoshiura, A Training Simulator for Intraoral Radiography, 2006 IEEE/RSJ International Conference on IEEE, IEEE, New York, 2006. 

  7. I.A. Pretty, Caries detection and diagnosis: novel technologies, J. Dent. 34 (2006) 727-739. 

  8. S.H. Cho, S.Y. Kim, S.H. An, S.M. Lim, R.N. Lee, Feasibility study of insertable miniature x-ray source for dental imaging, Korean J. Radio. 6 (2012) 39-45. 

  9. S.H. Cho, D.Y. Kim, K.W. Baek, R.N. Lee, Introduction of Dental X-ray Imaging with New Conceptdintraoral X-ray Tube, The Magazine of the IEEK 48, 2011, p. 95. 

  10. S.H. Heo, H.J. Kim, J.M. Ha, S.O. Cho, A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters, Nanoscale Res. Lett. 7 (2012) 258. 

  11. H.J. Kim, J.M. Ha, S.H. Heo, S.O. Cho, Small-sized flat-tip CNT emitters for miniaturized X-ray tubes, J. Nano. 2012 (2012). Article ID 854602. 

  12. Y. Sakai, D. Tone, S. Nagatsu, T. Endo, S. Kita, F. Okuyama, Characterization of field emission from carbon nanofibers on a metal tip, Appl. Phys. Lett. 95 (2006) 073104. 

  13. N. De Jonge, Y. Lamy, K. Schoots, T.H. Oosterkamp, High brightness electron beam from a multi-walled carbon nanotube, Nature 420 (2002) 393-395. 

  14. G. Zhao, J. Zhang, Q. Zhang, J. Tang, O. Zhou, L.C. Qin, Fabrication and test of single nanotube emitter as point electron source, Microsc. Microanal. 10 (2004) 550-551. 

  15. G. Zhao, Q. Zhang, H. Zhang, G. Yang, O. Zhou, L.C. Qina, Field emission of electrons from a Cs-doped single carbon nanotube of known chiral indices, Appl. Phys. Lett. 89 (2006) 63113. 

  16. S.H. Heo, A. Ihsan, S.O. Cho, Transmission-type microfocus x-ray tube using carbon nanotube field emitters, Appl. Phys. Lett. 90 (2007) 183109. 

  17. R.J. Parmee, C.M. Collins, W. Milne, M.T. Cole, X-ray generation using carbon nanotubes, Nano. Convergence 2 (2015) 1-27. 

  18. E.L. Murphy, R.H. Good, Thermionic emission, field emission, and the transition region, Phys. Rev. 102 (1956) 1464. 

  19. M.J. Rivard, S.D. Davis, L.A. DeWerd, T.W. Rusch, S. Axelrod, Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source, Med. Phys. 33 (2006) 4020-4022. 

  20. S.H. Heo, A. Ihsan, S.O. Cho, Stable Field Emitters for a Miniature X-ray tube using carbon nanotube drop drying on a flat metal tip, Nanoscale Res. Lett. 5 (2010) 720-724. 

  21. J.M. Ha, H.J. Kim, H.S. Raza, S.O. Cho, Highly stable carbon nanotube field emitters on small metal tips against electrical arcing, Nanoscale Res. Lett. 8 (2013) 355. 

  22. W.B. Herrmannsfeldt, G.A. Herrmannsfeldt, EGN Electron Optics Program, SLAC, Stanford, California, 1993. 

  23. Los Alamos National Lab, MCNP-A General Monte Carlo NParticle Transport, version 5, 2003. 

  24. G.J. Qiao, C.G. Zhang, Z.H. Jin, Thermal cyclic test of alumina/kovar joint brazed by Ni-Ti active filler, Ceram. Int. 29 (2003) 7-11. 

  25. G. Massillon, S. Chiu-Tsao, I. Domingo-Munoz, M. Chan, Energy dependence of the new Gafchromic EBT3 film: dose response curves for 50 kV, 6 and 15 MV X-ray beams, Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 1 (2012) 60-65. 

  26. European Committee for Standardization: EN 12543-5, E. Brussels, 1999. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로