$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Biodrying of municipal solid waste under different ventilation periods 원문보기

Environmental engineering research, v.21 no.2, 2016년, pp.145 - 151  

Ab Jalil, N.A. (Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia) ,  Basri, H. (Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia) ,  Basri, N.E. Ahmad (Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia) ,  Abushammala, Mohammed F.M. (Department of Civil Engineering, Middle East College, Knowledge Oasis Muscat)

Abstract AI-Helper 아이콘AI-Helper

Biodrying is a pre-treatment method that applies biological and mechanical concepts to drying solid waste. In Malaysia, municipal solid waste (MSW) is unseparated and contains a high level of moisture, making the use of technology such as solid waste burning unsuitable and harmful. MSW containing or...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Moreover, the National Renewable Energy Policy and Action Plan (2009) has been legislated the implementation of the feed in tariff (FiT) for renewable energies that provide the priorities to electricity generated from indigenous renewable energy resources to be purchased by power utilities at a fixed premium price and for a specific duration [36]. Therefore, this paper discusses the influence of ventilation periods on biodrying in a laboratory scale process to observe the reduction of moisture content percentage and temperature patterns for biodrying MSW also the cost of electricity consumption associated with ventilation periods.
  • At the same time, moisture inside the reactor could evaporate easily through the porous structure of the geotextile cover. The reactor was equipped with a temperature sensor connected to a data logger, which allowed for the collection and monitoring of temperature data inside the biodrying system.
  • In this study, a three replication of SMSW samples, weighing approximately 12 kg each, were processed at five different air interval times controlled by mechanical timer. The way of ventilation used the principle of extract-only ventilation system which required simple mechanical ventilation system extracts the air from the ventilated space with ducts and fans.
  • Air was injected into the reactors from air compressor in compliance with schedule ventilation periods for each reactor. The ventilation periods were as follows: 5 min ventilation and 3 h with no ventilation (Reactor A), 10 min ventilation and 3 h with no ventilation (Reactor B), 15 min ventilation and 3 h with no ventilation (Reactor C), 20 min ventilation and 3 h with no ventilation (Reactor D) and 30 min ventilation and 3 h with no ventilation (Reactor E) continuously for 14 days. Table 2 presents the management of ventilation periods during biodrying process.
  • In this study, temperature was monitored every day for 14 days to observe the microbial activity that occurred during biodrying. As depicted in Fig.

대상 데이터

  • The reactor capacity was 50 L, with an external dimension of 600 mm length × 400 mm width × 360 mm height and an internal dimension of 540 mm length × 345 mm width × 275 mm height.
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. Kathirvale S, Yunus M, Sopian K, Samsuddin A. Energy potential from municipal solid waste in Malaysia. Renew Energ. 2004;29:559-67. 

  2. Ciuta S, Apostol T, Rusu V. Urban and rural MSW stream characterization for separate collection improvement. Sustainability 2015;7:916-931. 

  3. Rada E. Energy from municipal solid waste. WIT Trans. Ecol. Environ. 2014;190:945-958. 

  4. Rada E. Effects of MSW selective collection on waste-to-energy strategies. Wit. Trans. Ecol. Envir. 2013; 176:215-223. 

  5. Consonni S. Giugliano M. Massarutto A. Ragazzi M. Saccani C. Material and energy recovery in integrated waste management systems: Project overview and main results. Waste Manage. 2011;31:2057-2065. 

  6. Cioranu S.I, Badea A. 2013.Different strategies for MSW management in two Romanian cities: Selective collection versus bio-drying. UPB Sci. Bull., series D. 75:151-158 

  7. Abushammala MF, Basri NEA, Younes MK. Methane oxidation in landfill cover soils: A review. AJAE. 2014;8:1-14. 

  8. Gholamifard S, Eymard R, Duquennoi C. Modeling anaerobic bioreactor landfills in methanogenic phase: Long term and short term behaviors. Water Res. 2008;42:5061-5071. 

  9. Ab Jalil N, Basri H, Basri NEA, Abushammala MF. The Potential of Biodrying as Pre-treatment for Municipal Solid Waste in Malaysia. Journal of Advanced Review on Scientific Research 2015;7:1-13. 

  10. Sugni M, Calcaterra E, Adani F. Biostabilization-biodrying of municipal solid waste by inverting air-flow. Bioresour. Technol. 2005;96:1331-1337. 

  11. He P, Zhao L, Zheng W, Wu D, Shao L. Energy balance of a biodrying process for organic wastes of high moisture content: A review. Dry Technol. 2013;31:132-145. 

  12. Rada E, Ragazzi M, Badea A. MSW Bio-drying: Design criteria from a 10 years research. UPB Sci. Bull., series D. 2012;74: 209-216. 

  13. Tambone F, Scaglia B, Scotti S, Adani F. Effects of biodrying process on municipal solid waste properties. Bioresour. Technol. 2011;102:7443-7450. 

  14. Rada E, Franzinelli A, Taiss M, Ragazzi M, Panaitescu V, Apostol T. Lower heating value dynamics during municipal solid waste bio-drying. Environ. Technol. 2007;28:463-469. 

  15. Psomopoulos C, Themelis N. The combustion of as-received and pre-processed (RDF/SRF) municipal solid wastes as fuel for the power sector. Energ. Sources Part A. 2015;37:1813-1820. 

  16. Rada E, Squazardo L, Ionescu G, Badea A. Economic viability of SRF co-combustion in cement factory. UPB Sci. Bull. Series D. 2014;76:199-206. 

  17. Kim DW, Lee JM, Kim JS. Co-combustion of refuse derived fuel with anthracites in a CFB boiler. In: Proceedings of the 20th International Conference on Fluidized Bed Combustion. Springer; 2010. p. 262-270. 

  18. Heering B, Heering M, Heil J. Processing waste to useful fractions with the Herhof dry stabilization technique. Aufbereit.-Tech. 1999;40:11-18. 

  19. Adani F, Baido D, Calcaterra E, Genevini P. The influence of biomass temperature on biostabilization-biodrying of municipal solid waste. Bioresource Technol. 2002;83:173-179. 

  20. Rada E, Ragazzi M, Panaitescu V. MSW bio-drying: An alternative way for energy recovery optimization and landfilling minimization. UPB Sci Bull., series D. 2009;71:113-120. 

  21. Dominczyk A, Krzystek L, Ledakowicz S. Biodrying of organic municipal wastes and residues from the pulp and paper industry. Dry Technol. 2014;32:1297-1303. 

  22. Zawadzka A, Krzystek L, Ledakowicz S. Autothermal drying of organic fraction of municipal solid waste. Environ Prot Eng. 2009;35:123-133. 

  23. Zhang D, Pinjing H, Liming S, Taifeng J, Jingyao H. Biodrying of municipal solid waste with high water content by combined hydrolytic-aerobic technology. J Environ Sci. 2008;20:1534-1540. 

  24. He P, Tang J, Zhang D, Zeng Y, Shao L. Release of volatile organic compounds during bio-drying of municipal solid waste. J Environ Sci. 2010;22:752-759. 

  25. Zhang D.-Q, Zhang H, Wu C.-L, Shao L.-M, He P.-J. Evolution of heavy metals in municipal solid waste during bio-drying and implications of their subsequent transfer during combustion. Waste Manage. 2011; 31:1790-1796. 

  26. Zhang D.-Q, He P.-J, Shao L.-M. Potential gases emissions from the combustion of municipal solid waste by bio-drying. J Hazard Mater. 2009;168:1497-1503. 

  27. Negoi R, Ragazzi M, Apostol T, Rada E, Marculescu C. Bio-drying of Romanian municipal solid waste: An analysis of its viability. UPB Sci. Bull. Series C. 2009;71:193-204. 

  28. Wiemer K. Mechanical-biological treatment of residual waste based on the dry stabilate method. Baeza.; 1995. 

  29. Velis C, Longhurst P, Drew G, Smith R, Pollard S. Biodrying for mechanical-biological treatment of wastes: A review of process science and engineering. Bioresource Technol. 2009; 100:2747-2761. 

  30. Colomer-Mendoza F, Herrera-Prats L, Robles-Martinez F, Gallardo-Izquierdo A, Pina-Guzman, A. Effect of airflow on biodrying of gardening wastes in reactors. J Environ Sci. 2013;25:865-872. 

  31. Cai L, Chen T.-B, Gao D, Zheng G.-D, Liu H.-T, Pan T.-H. Influence of forced air volume on water evaporation during sewage sludge bio-drying. Water Res. 2013;474767-4773. 

  32. Fabian R.-M, Elizabeth M, Teodoro E.-S, Belem P, Carmen C.-M, Francisco J, Enrique D.-P. Biodrying under greenhouse conditions as pretreatment for horticultural waste. J Environ Prot Ecol. 2012. 

  33. Manaf L, Samah M, Zukki N. Municipal solid waste management in Malaysia: Practices and challenges. Waste Manage. 2009;29:2902-2906. 

  34. Koh S, Lim Y. Meeting energy demand in a developing economy without damaging the environment-A case study in Sabah, Malaysia, from technical, environmental and economic perspectives. Energ Policy. 2010;38:4719-4728. 

  35. Oh T, Pang S, Chua S. Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth. Renew Sust Energ Rev. 2010;14:1241-1252. 

  36. Shafie S, Mahlia T, Masjuki H, Andriyana A. Current energy usage and sustainable energy in Malaysia: A review. Renew Sust Energ Rev. 2011;15:4370-4377. 

  37. Sadaka S. Partial composting for biodrying organic materials. 2011. 

  38. Finstein M, Hogan J. Integration of composting process microbiology, facility structure and decision-making. Science and Engineering of Composting. 1993. p. 1-23. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로