$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Bacillus spp. 엽면살포에 의한 가로수 및 고추의 병 방제
Disease Management in Road Trees and Pepper Plants by Foliar Application of Bacillus spp. 원문보기

Research in plant disease = 식물병연구, v.22 no.2, 2016년, pp.81 - 93  

정준휘 (한국생명공학연구원 분자식물세균실험실) ,  류충민 (한국생명공학연구원 분자식물세균실험실)

초록
AI-Helper 아이콘AI-Helper

식물생장촉진세균은 식물의 생장과 수확량을 촉진하고, 식물병에 대한 유도저항성을 유도하는 것으로 보고되었다. 본 논문에서 연구의 목적은 가로수와 고추의 엽면에 엽권정착 식물생장촉진세균을 처리하여, 식물생장촉진세균의 적용 범위를 확장하였다. 수목의 엽권에서 내생포자 형성 세균 1,056개 균주를 분리하여, protease, chitinase, lipase를 포함한 효소활성과 진균병인 C. graminicola와 B. cinerea에 대한 길항작용을 측정하였다. 1차 선발된 bacilli 14개 균주를 고추의 잎에 살포하여 엽권정착능을 시험하였다. 5B6, 8D4, 8G12 단독처리와 그 혼합처리군을 고추 엽면에 살포하여 생장촉진, 수확량증진, 병방제 효과를 고추 포장에서 관찰하였다. 대량배양을 통하여 선발된 균주를 대한민국 대전광역시 유성구 일대의 가로수에 살포하였을 때, 대조군과 비교하여 엽록소함량과 잎 두께가 증가하였다. 선발된 3개 균주를 수목에 엽면살포했을 때, 벚나무 진균성갈색무늬구멍병을 저해하였고 은행나무의 낙엽생성을 촉진하였다. 종합적으로 본 연구는 엽권정착세균의 엽면살포를 통하여 가로수와 고추의 생장을 촉진시키고, 식물병을 방제하는 엽권정착세균의 적용 가능성을 제시한다.

Abstract AI-Helper 아이콘AI-Helper

Out of plant-associated bacteria, certain plant growth-promoting bacteria (PGPB) have been reported to increase plant growth and productivity and to elicit induced resistance against plant pathogens. In this study, our objective was to broaden the range of applications of leaf-colonizing PGPB for fo...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • )를 목본식물의 모델로 선정하여(Zhigila 등, 2014), 선발된 PGPB의 효과를 확인하였다. 또한 PGPB에 의한 은행나무 낙엽생성에 대한 연구도 진행하여 종합적인 가로수 관리의 가능성을 탐색하였다.
  • 식물생장 촉진세균은 식물의 생장과 수확량을 촉진하고, 식물병에 대한 유도저항성을 유도하는 것으로 보고되었다. 본 논문에서 연구의 목적은 가로수와 고추의 엽면에 엽권정착 식물생장촉진세균을 처리하여, 식물생장촉진세균의 적용 범위를 확장하였다. 수목의 엽권에서 내생포자 형성 세균 1,056개 균주를 분리하여, protease, chitinase, lipase를 포함한 효소활성과 진균병인C.
  • 본 연구는 수목의 엽권에 정착하는 PGPB를 가로수에 처리함으로써, 기존의 PGPB를 이용한 생물적 방제법을 확장하면서 PGPB의 성공적인 엽권정착을 고려한 가로수의 지속적인 관리방법을 제시하였다. 본 연구에서 실행했던 가로수를 대상으로 한 검정실험에서도 벚나무 병의 방제와 생장촉진 효과를 확인할 수 있었기에, 이전의 수목을 대상으로 한 실험 연구결과를 뒷받침하면서 실질적인 가로수 관리 방법을 도입하였다(Ryu 등, 2011).
  • 본 연구는 수목의 엽권에 정착하는 내생포자 생성 세균을 분리해 생물학적 활성을 기반으로 분리한 PGPB를 고추와 가로수에 적용하여, 생장촉진효과와 지상부 병을 방제 효과를 확인한 연구이다. 가로수의 엽권에 정착하는 PGPB를 분리한 후, 효소활성 검정을 통해 최종적으로 B.
  • PGPB에 의한 식물병 방제기작은 경쟁, 길항작용, 식물의 면역을 증진 시키는 유도저항성이 알려져 있다(Compant 등, 2005; Glick, 2012; Lee 등, 2015; Saraf 등, 2014). 본 연구에서는 PGPB를 엽면 살포하여 엽면에 발생한 식물병의 발생이 감소하는 결과를 설명하기 위해 식물병에 대한 PGPB의 직접적인 길항작용을 살펴보았다. 본연구에서분리한 PGPB 중, B.
  • 본 연구에서는 수목의 지상부 병을 방제하기 위한 방법으로 엽권에 정착하는 PGPB 처리에 의한 수목의 생장촉진 효과와 병저항성 반응을 연구하였다. 엽권정착능이 뛰어난 bacilli 계열균주가 내생포자를 형성한다는 특성을 이용하여 생물적 방제제로서 장기보관과 운반이 용이하다는 장점을 확보하였다.
  • 선발된 PGPB를 이용한 고추의 생물학적 활성 측정을 위한 포장 실험.

  • 또한 벚나무의 진균성갈색무늬구멍병의 감소와 은행나무의 낙엽이 탈리되는 시기가 앞당겨지는 효과를 확인할 수 있었다. 여기에서는 엽권정착 PGPB를 수목의 엽면에 처리하여 가로수의 종합적이고, 친환경적인 방제기술을 확립하고자 하였다.
  • 선발된 3개 균주를 수목에 엽면살포했을 때, 벚나무 진균성갈색무늬구멍병을 저해하였고 은행나무의 낙엽생성을 촉진하였다. 종합적으로 본 연구는 엽권정착세균의 엽면살포를 통하여 가로수와 고추의 생장을 촉진시키고, 식물병을 방제하는 엽권정착세균의 적용 가능성을 제시한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
엽권정착세균이란 무엇인가? 최근 연구동향을 보면 근권에 정착하는 미생물에 대한 연구는 활발하게 이루어졌으나 엽권에 정착하는 미생물에 대한 연구는 상대적으로 미진한 상황이다(Cirvilleri 등, 2008; Delmotte 등, 2009; Knief 등, 2012). 엽권정착세균 (phyllobacteria)은 표면정착세균 중에서 엽권에 정착하여 살아가는 세균을 총칭하며, 생장촉진과 같이 식물에 긍정 적인 영향을 주거나 또는 지상부에 병을 일으키는 것과 같은 부정적인 영향도 주며 엽권에 정착하여 살아간다(Glick, 2012; Lindow와 Brandl, 2003; Vorholt, 2012). 식물의 표면에 정착하여 식물에 긍정적인 영향을 주는 세균 군집 중에서 식물의 생장을 촉진시키는 세균을 총칭하여 식물생장촉진세 균(plant growth-promoting bacteria, PGPB)으로 명명하였다 (Glick, 2012; Glick과 Bashan, 1997; Vorholt, 2012).
사과나무 근권에서 분리한 PGPB를 엽면살포했을 때 수목에 미치는 영향은? fluorescens와 P. putida를 수목에 엽면살포한 결과 사과의 검은별무늬병을 방제하였으며(Ganeshan과 Manoj Kumar, 2005; Kinkel, 1997; Kucheryava 등, 1999; Planchamp 등, 2015), 사과나무 근권에서 분리한 PGPB를 사과나무에 엽면살포한 결과 수목의 생장이 촉진되고 수확량이 증대하는 사례도 보고되었다(Ryu 등, 2011). 또한, 토양에서 분리한 Bacillus subtilis Osu-142 균주를 살구수목에 살포하였을 때 살구나무의 생장과 수확량이 증진되는 효과와 진균병 인 Wilsonomyces carpophilus에 대한 방제 효과도 보고되었다 (Altindag 등, 2006; Çakmakçı 등, 2001; Eşitken 등, 2002; Esitken 등, 2006).
식물생장촉진세 균이 친환경적인 방제방법으로 인식되게 된 효과는 무엇인가? 식물의 표면에 정착하여 식물에 긍정적인 영향을 주는 세균 군집 중에서 식물의 생장을 촉진시키는 세균을 총칭하여 식물생장촉진세 균(plant growth-promoting bacteria, PGPB)으로 명명하였다 (Glick, 2012; Glick과 Bashan, 1997; Vorholt, 2012). PGPB가 직•간 접적으로 유해한 미생물을 저해하고 식물의 유도전신저항 성(induced systemic resistance, ISR)을 일으키는 효과가 보고 되면서, PGPB를 식물에 처리하여 화학농약의 단점을 극복 하는 친환경적인 병 방제방법으로 인식하게 되었다(Bashan과 Holguin, 1998; Compant 등, 2005; Whipps, 2001). 방법론적으로는 PGPB로 알려진 Bacillus속이나 Pseudomonas속을 근 권에서 분리하여 식물의 뿌리에 처리하는 방법이 주로 시도되었다(Bhattacharyya와 Jha, 2012; Kishore와 Pande, 2007; Kloepper 등, 1980).
질의응답 정보가 도움이 되었나요?

참고문헌 (82)

  1. Agrios, G. N. 1997. Plant Pathology. 4th ed. Academic Press, San Diego, CA, USA. 

  2. Altindag, M., Sahin, M., Esitken, A., Ercisli, S., Guleryuz, M., Donmez, M. F. and Sahin, F. 2006. Biological control of brown rot (Moniliana laxa Ehr.) on apricot (Prunus armeniaca L. cv. Hacihaliloglu) by Bacillus, Burkholdria, and Pseudomonas application under in vitro and in vivo conditions. Biol. Control 38: 369-372. 

  3. Baker, C. J., Stavely, J. R., Thomas, C. A., Sasser, M. and MacFall, J. S. 1983. Inhibitory effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves. Phytopathology 73: 1148-1152. 

  4. Bashan, Y. and Holguin, G. 1998. Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol. Biochem. 30: 1225-1228. 

  5. Behr, M., Humbeck, K., Hause, G., Deising, H. B. and Wirsel, S. G. 2010. The hemibiotroph Colletotrichum graminicola locally induces photosynthetically active green islands but globally accelerates senescence on aging maize leaves. Mol. Plant-Microbe Interact. 23: 879-892. 

  6. Bhattacharyya, P. N. and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327-1350. 

  7. Bishop, S. 2009. Plant cell biology: when autumn falls. Nat. Rev. Mol. Cell Biol. 10: 238-239. 

  8. Brock, A. K., Berger, B., Mewis, I. and Ruppel, S. 2013. Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. Microb. Ecol. 65: 661-670. 

  9. Cakmakci, R., Kantar, F. and Sahin, F. 2001. Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. J. Plant Nutr. Soil Sci. 164: 527-531. 

  10. Chantawannakul, P., Oncharoen, A., Klanbut, K., Chukeatirote, E. and Lumyong, S. 2002. Characterization of proteases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in Northern Thailand. Sci. Asia 28: 241-245. 

  11. Chernin, L. and Chet, I. R. 2002. Microbial enzymes in the biocontrol of plant pathogens and pests. In: Enzymes in the Environment: Activity, Ecology, and Applications, eds. by R. G. Burns and R. P. Dick, pp. 171-226. CRC Press, New York, NY, USA. 

  12. Choudhary, D. K., Prakash, A. and Johri, B. N. 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian J. Microbiol. 47: 289-297. 

  13. Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S. D. and Roberts, D. P. 2008. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol. 80: 115-123. 

  14. Cirvilleri, G., Spina, S., Iacona, C., Catara, A. and Muleo, R. 2008. Study of rhizosphere and phyllosphere bacterial community and resistance to bacterial canker in genetically engineered phytochrome A cherry plants. J. Plant Physiol. 165: 1107-1119. 

  15. Cohen, A. C., Bottini, R. and Piccoli, P. N. 2008. Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul. 54: 97-103. 

  16. Cohen, A. C., Travaglia, C. N., Bottini, R. and Piccoli, P. N. 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87: 455-462. 

  17. Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. App. Environ. Microbiol. 71: 4951-4959. 

  18. Coste, S., Baraloto, C., Leroy, C., Marcon, e., Renaud, A., Richardson, A. D., Roggy, J. C., Schimann, H., Uddling, J. and Herault, B. 2010. Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana. Ann. Forest Sci. 67: 607. 

  19. Dawwam, G. E., Elbeltagy, A., Emara, H. M., Abbas, I. H. and Hassan, M. M. 2013. Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann. Agric. Sci. 58: 195-201. 

  20. Delmotte, N., Knief, C., Chaffron, S., Innerebner, G., Roschitzki, B., Schlapbach, R., von Mering, C. and Vorholt, J. A. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. U. S. A. 106: 16428-16433. 

  21. Donmez, M. F., Esitken, A., Yildiz, H. and Ercisli, S. 2011. Biocontrol of Botrytis cinerea on strawberry fruit by plant growth promoting bacteria. J. Anim. Plant Sci. 21: 758-763. 

  22. Enebak, S. A. and Carey, W. A. 2000. Evidence for induced systemic protection to fusiform rust in loblolly pine by plant growthpromoting rhizobacteria. Plant Dis. 84: 306-308. 

  23. Esitken, A., Karlidag, H., Ercisli, S. and Sahin, F. 2002. Effects of foliar application of Bacillus subtilis Osu-142 on the yield, growth and control of shot-hole disease (coryneum blight) of apricot. Gartenbauwissenschaft 67: 139-142. 

  24. Esitken, A., Pirlak, L., Turan, M. and Sahin, F. 2006. Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci. Hortic. 110: 324-327. 

  25. Eyles, A., Bonello, P., Ganley, R. and Mohammed, C. 2010. Induced resistance to pests and pathogens in trees. New Phytol. 185:893-908. 

  26. Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. 2006. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 9: 436-442. 

  27. Ganeshan, G. and Manoj Kumar, A. 2005. Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. J. Plant Interact. 1: 123-134. 

  28. Glick, B. R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica Online publication. doi: 10.6064/2012/963401. 

  29. Glick, B. R. and Bashan, Y. 1997. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv. 15: 353-378. 

  30. Gomez-Cadenas, A., Tadeo, F. R., Talon, M. and Primo-Millo, E. 1996. Leaf abscission induced by ethylene in water-stressed intact seedlings of cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiol. 112: 401-408. 

  31. Han, S. H., Kang, B. R., Lee, J. H., Kim, H. J., Park, J. Y., Kim, J. J. and Kim, Y. C. 2012. Isolation and characterization of oligotrophic bacteria possessing induced systemic disease resistance against plant pathogens. Plant Pathol. J. 28: 68-74. 

  32. Hariprasad, P., Divakara, S. T. and Niranjana, S. R. 2011. Isolation and characterization of chitinolytic rhizobacteria for the management of Fusarium wilt in tomato. Crop Prot. 30: 1606-1612. 

  33. Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C. and Murata, Y. 2011. Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiol. 156: 430-438. 

  34. Hsu, S. C. and Lockwood, J. L. 1975. Powdered chitin agar as a selective medium for enumeration of Actinomycetes in water and soil. Appl. Microbiol. 29: 422-426. 

  35. Jacobsen, B. J. 1997. Role of plant pathology in integrated pest management. Annu. Rev. Phytopathol. 35: 373-391. 

  36. Jacobsen, B. J., Zidack, N. K. and Larson, B. J. 2004. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94: 1272-1275. 

  37. Jiang, Z. Q., Guo, Y. H., Li, S. M., Qi, H. Y. and Guo, J. H. 2006. Evaluation of biocontrol efficiency of different Bacillus preparations and field application methods against Phytophthora blight of bell pepper. Biol. Control 36: 216-223. 

  38. Kim, B. K., Chung, J. H., Kim, S. Y., Jeong, H., Kang, S. G., Kwon, S. K., Lee, C. H., Song, J. Y., Yu, D. S., Ryu, C. M. and Kim, J. F. 2012. Genome sequence of the leaf-colonizing Bacterium Bacillus sp. strain 5B6, isolated from a cherry tree. J. Bacteriol. 194: 3758-3759. 

  39. Kim, J. H., Woo, H. R., Kim, J., Lim, P. O., Lee, I. C., Choi, S. H., Hwang, D. and Nam, H. G. 2009. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323: 1053-1057. 

  40. Kinkel, L. L. 1997. Microbial population dynamics on leaves. Annu. Rev. Phytopathol. 35: 327-347. 

  41. Kishore, G. K. and Pande, S. 2007. Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions. Lett. Appl. Microbiol. 44: 98-105. 

  42. Kloepper, J. W., Leong, J., Teintze, M. and Schroth, M. N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886. 

  43. Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., von Mering, C. and Vorholt, J. A. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6: 1378-1390. 

  44. Korsten, L., De Villiers, E. E., Wehner, F. C. and Kotze, J. M. 1997. Field sprays of Bacillus subtilis and fungicides for control of preharvest fruit diseases of avocado in South Africa. Plant Dis. 81: 455-459. 

  45. Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J. and Borriss, R. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186: 1084-1096. 

  46. Kucheryava, N., Fiss, M., Auling, G. and Kroppenstedt, R. M. 1999. Isolation and characterization of epiphytic bacteria from the phyllosphere of apple, antagonistic in vitro to Venturia inaequalis, the causal agent of apple scab. Syst. Appl. Microbiol. 22: 472-478. 

  47. Lee, D. W., Koh, Y. S., Kim, K. J., Kim, B. C., Choi, H. J., Kim, D. S., Suhartono, M. T. and Pyun, Y. R. 1999. Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 179: 393-400. 

  48. Lee, H. J., Kim, J. S., Yoo, S. J., Kang, E. Y., Han, S. H., Yang, K. Y., Kim, Y. C., McSpadden Gardener, B. and Kang, H. 2012. Different roles of glycine-rich RNA-binding protein7 in plant defense against Pectobacterium carotovorum, Botrytis cinerea, and tobacco mosaic viruses. Plant Physiol. Biochem. 60: 46-52. 

  49. Lee, K. J., Kamala-Kannan, S., Sub, H. S., Seong, C. K. and Lee, G. W. 2008. Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J. Microbiol. Biotechnol. 24: 1139-1145. 

  50. Lee, S. M., Chung, J. h. and Ryu, C. M. 2015. Augmenting plant immune responses and biological control by microbial determinants. Res. Plant Dis. 21: 161-179. 

  51. Leveau, J. J. H. 2015. Life of microbes on aerial plant parts. In: Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture, ed. by B. Lugtenberg, pp. 17-24. Springer International Publishing, Cham, Germany. 

  52. Lindow, S. E. and Brandl, M. T. 2003. Microbiology of the phyllosphere. Appl. Environ. Bicrobiol. 69: 1875-1883. 

  53. Lindow, S. E. and Leveau, J. H. 2002. Phyllosphere microbiology. Curr. Opin. Biotechnol. 13: 238-243. 

  54. Ling, Q., Huang, W. and Jarvis, P. 2011. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynth. Res. 107: 209-214. 

  55. Lugtenberg, B. J., Chin-A-Woeng, T. F. and Bloemberg, G. V. 2002. Microbe-plant interactions: principles and mechanisms. Anton. Leeuw. 81: 373-383. 

  56. Ma, Z., Proffer, T. J., Jacobs, J. L. and Sundin, G. W. 2006. Overex-pression of the $14{\alpha}$ -demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Appl. Environ. Microbiol. 72: 2581-2585. 

  57. Maksimov, I. V., Abizgil'dina, R. R. and Pusenkova, L. I. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl. Biochem. Microbiol. 47: 333-345. 

  58. Neeraja, C., Anil, K., Purushotham, P., Suma, K., Sarma, P., Moerschbacher, B. M. and Podile, A. R. 2010. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit. Rev. Biotechnol. 30: 231-241. 

  59. Obradovic, A., Jones, J. B., Momol, M. T., Balogh, B. and Olson, S. M. 2004. Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis. 88: 736-740. 

  60. Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580. 

  61. Planchamp, C., Glauser, G. and Mauch-Mani, B. 2015. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front. Plant Sci. 5: 719. 

  62. Pusey, P. L. 1989. Use of Bacillus subtilis and related organisms as biofungicides. Pestic. Sci. 27: 133-140. 

  63. Raupach, G. S. and Kloepper, J. W. 1998. Mixtures of plant growthpromoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88: 1158-1164. 

  64. Reid, M. S. 1985. Ethylene and abscission. HortScience 20: 45-50. 

  65. Ryu, C. M., Shin, J. N., Qi, W., Ruhong, M., Kim, E. J. and Pan, J. G. 2011. Potential for augmentation of fruit quality by foliar application of bacilli spores on apple tree. Plant Pathol. J. 27: 164-169. 

  66. Sahin, F. and Miller, S. 1998. Resistance in Capsicum pubescens to Xanthomonas campestris pv. vesicatoria pepper race 6. Plant Dis. 82: 794-799. 

  67. Sakamoto, M., Munemura, I., Tomita, R. and Kobayashi, K. 2008a. Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J. 56: 13-27. 

  68. Sakamoto, M., Munemura, I., Tomita, R. and Kobayashi, K. 2008b. Reactive oxygen species in leaf abscission signaling. Plant Signal. Behav. 3: 1014-1015. 

  69. Saraf, M., Pandya, U. and Thakkar, A. 2014. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol. Res. 169: 18-29. 

  70. Silva, H. S. A., Romeiro, R. S., Carrer Filho, R., Pereira, J. L. A., Mizubuti, E. S. G. and Mounteer, A. 2004. Induction of systemic resistance by Bacillus cereus against tomato foliar diseases under field conditions. J. Phytopathol. 152: 371-375. 

  71. Smart, C. M. 1994. Gene expression during leaf senescence. New Phytol. 126: 419-448. 

  72. Stefan, M., Munteanu, N., Stoleru, V. and Mihasan, M. 2013. Effects of inoculation with plant growth promoting rhizobacteria on photosynthesis, antioxidant status and yield of runner bean. Rom. Biotech. Lett. 18: 8132-8143. 

  73. Sun, X., Griffith, M., Pasternak, J. J. and Glick, B. R. 1995. Low temperature growth, freezing survival, and production of antifreeze protein by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol. 41: 776-784. 

  74. Tortora, M. L., Diaz-Ricci, J. C. and Pedraza, R. O. 2011. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch. Microbiol. 193: 275-286. 

  75. Uddling, J., Gelang-Alfredsson, J., Piikki, K. and Pleijel, H. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 91: 37-46. 

  76. Vorholt, J. A. 2012. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10: 828-840. 

  77. Wang, Y., Ohara, Y., Nakayashiki, H., Tosa, Y. and Mayama, S. 2005. Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol. Plant-Microbe Interact. 18: 385-396. 

  78. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511. 

  79. Xue-Xuan, X., Hong-Bo, S., Yuan-Yuan, M., Gang, X., Jun-Na, S., Dong-Gang, G. and Cheng-Jiang, R. 2010. Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Crit. Rev. Biotechnol. 30: 222-230. 

  80. Yi, H. S., Yang, J. W., Choi, H. K., Ghim, S. Y. and Ryu, C. M. 2012. Benzothiadiazole-elicited defense priming and systemic acquired resistance against bacterial and viral pathogens of pepper under field conditions. Plant Biotechnol. Rep. 6: 373-380. 

  81. Zehnder, G. W., Murphy, J. F., Sikora, E. J. and Kloepper, J. W. 2001. Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107: 39-50. 

  82. Zhigila, D. A., AbdulRahaman, A. A., Kolawole, O. S. and Oladele, F. A. 2014. Fruit morphology as taxonomic features in five varieties of Capsicum annuum L. Solanaceae. J. Bot. 2014. doi: 10.1155/2014/540868. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로