$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한반도 중서부 홍성지역 내에 분포하는 사문암체의 지질연대학 및 지구조적 의미
Geochronological and Geotectonic Implications of the Serpentinite Bodies in the Hongseong Area, Central-western Korean Peninsula 원문보기

자원환경지질 = Economic and environmental geology, v.49 no.4, 2016년, pp.249 - 267  

김성원 (한국 지질자원연구원 국토지질연구본부) ,  박승익 (한국 지질자원연구원 국토지질연구본부)

초록
AI-Helper 아이콘AI-Helper

한반도 중서부 홍성지역은 지구조적으로 중국의 친링-다비에-수루대와 대비되는 충돌대일 가능성이 고려되는 지역이다. 홍성지역은 다수의 다양한 시기의 렌즈상 사문암체가 렌즈상 염기성암체와 함께 분포한다. 주 연구대상 사문암체 중 백동과 원노전 암체는 신원생대 알칼리화강암과 그리고 비봉암체는 고원생대 유구편마암과 접촉한다. 백동암체는 신원생대 알칼리화강암 암괴 및 고생대 후기 변성염기성 암괴를 포함하며, 비봉암체는 신원생대 알칼리화강암의 암괴를 포함한다. 세 암체 모두에서 중생대 관입암체가 인지되며, 비봉암체는 백악기의 화산암을 포함한다. 사문암체의 사문암에 대한 SHRIMP U-Pb 쇄설성 저어콘 연대결과는 백동 암체에서 시생대 후기부터 고생대 중기, 원노전과 비봉 암체에서 시생대 후기부터 백악기 전기까지 연대 범위를 보여준다. 비록 사문암화 과정에서 연대측정을 수행할 광물이 생성되지는 않지만, 가장 젊은 쇄설성 저어콘의 연대인 백동 사문암체의 고생대 중기와 원노전과 비봉 사문암체의 백악기 연대는 지금까지 알려진 사실과 달리 이들 사문암체가 고생대 중기 이후 혹은 백악기 전기 이후 사문암화되었을 가능성 또는 재동되었을 가능성에 대한 새로운 정보를 제공한다. 특히, 사문암체 내에서 나타나는 백악기 초기의 연대들은 사문암화 작용이 한반도 중서부 내에 분포하는 백악기 초기 화성작용과 관련되었을 가능성을 배제할 수 없다. 결과적으로 홍성지역의 연구대상 사문암체의 사문암과 사문암 내의 다양한 시기의 암괴들로부터 측정된 연대 결과들은 사문암화된 초염기성암의 사문암화 시기 및 사문암화 되는 지구조 환경 해석에 여러 가지 가능성을 제공하며, 연구지역의 다른 사문암체들을 포함한 사문암체에 대한 좀 더 자세한 지질연대학적 연구가 필요함을 지시한다.

Abstract AI-Helper 아이콘AI-Helper

The Hongseong area of the central-western Korean Peninsula is considered to be a part of collision zone that is tectonically correlated to the Qinling-Dabie-Sulu belt of China. The area includes the elliptical-shaped serpentinized ultramafic bodies, together with mafic rocks. The studied bodies are ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 4) 비봉 사문암체 내 원암에 가까운 초염기성암체로 해석되는 크로마 타이트 밴드를 가기는 사문암은 가장 젊은 ~374 Ma 의 쇄설성 저어콘 연대를 보여주어 고생대 중기 이후의 사문암화 작용을 지시하지만, 그 밖의 사문암은 백악기 초기를 보여주어 백악기 초기 이후의 사문암화 과정 또는 재동되었을 가능성을 지시한다.5) 유구 사문암체의 사문암에서의 백악기 중기(~91 Ma) 연대 또한 백악기의 사문암화 과정 가능성을 뒷받침한다.6) 백동을 관입한 트라이아스기 중기 관입암, 비봉암체 내백악기 전기의 관입암 및 화산암은 사문암화 과정의 하한시기를 지시할 수 있다.
  • 본 논문에서는 홍성지역 랜즈형 백동, 원노전, 비봉, 유구의 사문암체에서 현재까지 보고된 사문암 및 사문 암과 관련된 암석의 산상과 지질연대 자료를 보고하고자 한다.
  • 본 논문은 백동, 원노전 및 비봉사문암체의 산출양산, 사문암 및 사문암 내에 포함된 다양한 암괴 및 관입암체의 연대측정 자료를 통해 이들 사문암체 형성 및 사문암화 시기 등의 진화 연구에 중요한 정보를 제공하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
홍성지역에는 무엇이 발달해 있나? 1a). 특히, 홍성지역에는 주변 조산대와의 지구조적 대비로 주목을 받고 있는 렌즈상의 염기성암체와 사문암체가 다수 발달해 있다(Fig. 1b).
백동, 원노전 및 비봉 사문암체의 사문암화가 우세하게 진행된 부분은 어떤 광물이 우세한가? 백동, 원노전 및 비봉 사문암체의 대부분은 일반적으로 검은색과 녹색의 사문석으로 구성된다. 사문암화가 우세하게 진행된 부분에서는 안티고라이트, 리자다이트, 그리고 섬유상의 크리소타일(온석면)이 우세하다. 일부 사문화가 덜 진행된 신선한 부분의 경우 원암인 초염기성암의 등립상의 모자이크 조직 및 원생 입상 조직을 보여주어 원암의 생성 지구조 환경을 유추하는데 중요한 정보를 제공하고 있다.
한반도 중서부에 위치한 홍성지역은 어떤 지역인가? 한반도 중서부에 위치한 홍성지역은 지구조적으로 중국의 중생대 초기 대륙충돌대인 친링-다비에-수루대와 대비되는 충돌대의 가능성이 고려되는 중요한 지역이다(Fig. 1a).
질의응답 정보가 도움이 되었나요?

참고문헌 (31)

  1. Arai, S., Tamura, A., Ishimaru, S., Kadoshima, K. and Lee, Y.I. (2007) Petrology of the Yugu peridotites in the Gyeonggi Massif, South Korea: implications for its origin and hydration process. Island Arc, v.17, p.485-501. 

  2. Choi, S.J., Kee, W.S., Koh, H.J., Kwon, C.W., Kim, B.C., Kim, S.W., Kim, Y.B., Khim, Y.H., Kim, H.C., Park, S.-I., Song, K.Y., Yeon, Y.K., Lee, S.S., Lee, S.R., Lee, Y.S., Lee, H.J., Cho, D.R., Choi, B.Y., Hwan, J.K., Hyeon, H.J., Hwang, J.H. and Lee, J.A. (2014) Tectonic evolution of the western Gyeonggi block and construction of geologic DB system. Basic Research Report of the Korea Institute of Geoscience and Mineral Resources, 420p (In Korean with English summary). 

  3. Kee, W.S., Koh, H.J., Kim, S.W., Kim, Y.B., Khim, Y.H., Kim, H.C., Park, S.-I., Song, K.Y., Lee, S.R., Lee, Y.S., Lee, H.J., Cho, D.R., Choi, B.Y., Choi, S.J. and Hwang, J.H. (2011) Tectonic evolution of the upper crustal units in the mid-western part of the Korean peninsula. Basic Research Report of the Korea Inst. Geosci. Mineral Res., 242p. 

  4. Kim, S.W., Kee,W.-S., Lee, S.R., Santosh, M. and Kwon, S. (2013) Neoproterozoic plutonic rocks from the western Gyeonggi massif, South Korea: implications for the amalgamation and break-up of the Rodinia supercontinent. Precambrian Research v.227, p.349-367. 

  5. Kim, S.W., Kwon, S., Park, S.-I., Lee, C., Cho, D.-L., Lee, H.-J., Ko, K. and Kim, S.J. (2016) SHRIMP U-Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: A new tectonic model of the Cretaceous Korean Peninsula. Lithos, v.262, p.88-106. 

  6. Kim, S.W., Kwon, S., Ryu, I.-C., Jeong, Y.-J., Choi, S.J., Kee, W.-S., Yi, K., Lee, Y.S., Kim, B.C. and Park, D.W. (2012) Characteristics of the Early Cretaceous igneous activity in the Korean Peninsula and tectonic implications. Journal of Geology, v.120, p.625-646. 

  7. Kim, S.W., Kwon, S., Santosh, M., Williams, I.S. and Yi, K. (2011b) A Paleozoic subduction complex in Korea: SHRIMP zircon U-Pb ages and tectonic implications. Gondwana Res., v.20, p.890-903. 

  8. Kim, S.W., Park, S.-I., Ko, K., Lee, H.-J., Koh, H.J., Kihm, Y.H. and Lee, S.R. (2014c) 1:100,000 Tectonostratigraphic map of the Hongseong area, map 1: Solid Geology Interpretation. Korea Institution of Geoscience and Mineral Resources. 

  9. Kim, S.W., Oh, C.W., Williams, I.S., Rubbato, D., Ryu, I.-C., Rajesh, V.J., Kim, C.-B., Guo, J. and Zhai, M. (2006) Phanerozoic high-pressure eclogite and intermediate- pressure granulite facies metamorphism in the Gyeonggi block, South Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, v.92, p.357-377. 

  10. Kim, S.W., Santosh, M., Park, N. and Kwon, S. (2011c) Forearc serpentinite melange from the Hongseong suture, South Korea. Gondwana Research, v.20, p.852-864. 

  11. Kim, S.W., Williams, I.S., Kwon, S. and Oh, C.W. (2008) SHRIMP zircon geochronology and geochemical characteristics of metaplutonic rocks from the south-western Gyeonggi block, Korea: implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precambrian Research, v.162, p.475-497. 

  12. Kwon, S., Kim, S.W. and Santosh, M. (2013) Multiple generations of mafic-ultramafic rocks from the Hongseong suture zone, western South Korea: implications for the geodynamic evolution of NE Asia. Lithos, v.160-161, p.68-83. 

  13. Kwon, S., Sajeev, K., Mitra, G., Park, Y., Kim, S.W. and Ryu, I.-C. (2009) Evidence for Permo-Triassic collision in Far East Asia: The Korean collisional orogen. Earth Planet. Sci. Lett., v.279, p.340-349. 

  14. Ludwig, K.R, (2008) In: User's Manual for Isoplot 3.6: a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. 

  15. Ludwig, K.R. (2009) User's Manual for SQUID 2. Berkeley Geochronology Center Special Publication, Berkeley. 

  16. Oh, C.W., Choi, S.G., Seo, J., Rajesh, V.J., Lee, J.H., Zhai, M. and Peng, P. (2009) Neoproterozoic tectonic evolution of the Hongseong area, the southwestern part of Gyeonggi Massif, South Korea; implication for the tectonic evolution of Northeast Asia. Gondwana Research, v.16, p.272-284. 

  17. Oh, C.W., Choi, S.G., Song, S.W. and Kim, S.W. (2004) Metamorphic evolution of the Baekdong metabasite in the Hongseong area, South Korea and its relationship with the Sulu collision belt of China. Gondwana Research, v.7, p.809-816. 

  18. Oh, C.W., Kim, S.W., Choi, S.G., Zhai, M., Guo, J. and Sajeev, K. (2005) First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. Journal of Geology, v.113, p.226-232. 

  19. Oh, C.W., Rajesh, V.J., Seo, J., Choi, S.-G. and Lee, J.H. (2010) Spinel compositions and tectonic relevance of the Bibong ultramafic bodies in the Hongseong collision belt, South Korea. Lithos, v.117, p.198-208. 

  20. Oh, C.W., Seo, J., Choi, S.G., Rajesh, V.J. and Lee, J.H., 2012. U-Pb SHRIMP zircon geochronology, petrogenesis, and tectonic setting of the Neoproterozoic Baekdong ultramafic rocks in the Hongseong collision belt, South Korea. Lithos, v.128-131, p.100-112. 

  21. Park, S.-I., Kim, S.W., Kwon, S., Thanh, N.X., Yi, K. and Santosh, M. (2014a) Paleozoic tectonics of the southwestern Gyeonggi massif, South Korea: insight from geochemistry, chromian-spinel chemistry and SHRIMP U-Pb geochronology. Gondwana Research, v.26, p.684-698. 

  22. Park, S.-I., Kwon, S., Kim, S.W., Yi, K. and Santosh, M, (2014b) Continental origin of the Bibong eclogite, southwestern Gyeonggi massif, South Korea. Journal of Asian Earth Sciences, v.95, p.192-202. 

  23. Seo, J., Choi, S.-G., Oh, C.W., Kim, S.W. and Song, S.H. (2005) Genetic implications of two different ultramafic rocks from Hongseong area in the southwestern Gyeonggi Massif, South Korea. Gondwana Research, v.8, p.539-552. 

  24. Seo, J., Oh, C.W., Choi, S.G. and Rajesh, V.J. (2013) Two ultramafic rock types in the Hongseong area, South Korea: tectonic significance for northeast Asia. Lithos, v.175-176, p.30-39. 

  25. Song, S.H. and Song, Y.S. (2001) Mineralogy and geochemistry of ultramafic rocks from the Singok Area, Western Part of Chungnam. Economic and Environmental Geology, v.34, p.395-415. 

  26. Song, S.H., Choi, S.G., Oh, C.H., Seo, J. and Choi, S. (2004) Petrography and geochemistry of the ultramafic rocks from the Hongseong and Kwangcheon areas, Chungcheongnam-Do. Economic and Environmental Geology, v.37, p.477-497. 

  27. Song, S.H., Choi, S.G. and Woo, J.G. (1997) Genetic implications of ultramafic rocks from the Bibong area in the Gyeonggi gneiss complex. Economic and Environmental Geology, v.30, p.477-491. 

  28. Steiger, R. and Jager, E. (1977) Subcommission of geochronology: convention on the use of decay constants in geo- and cosmo-chronology. Earth and Planetary Science Letters, v.36, p.359-362. 

  29. Williams, I.S. (1998) U-Th-Pb geochronology by ion microprobe. In: McKibben, M. A., Shanks, W.C.I.I.I., Ridley, W.L. (Eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes, vol. 7. Society of Economic Geologists, Socorro, Reviews in Economic Geology, pp.1-35. 

  30. Williams, I.S., Cho, D.-L. and Kim, S.W. (2009) Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: constraints on Triassic post-collisional magmatism. Lithos, v.107, p.239-256. 

  31. Wu, Y.-K. and Suh, M.-C. (2000) Petrological study on the ultramafic rocks in Choongnam area. Journal of the Korean Earth Science Society, v.21, p.323-336. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로