$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 경두개 자기 자극이 인지 기능에 미치는 영향
Effects of Transcranial Magnetic Stimulation on Cognitive Function 원문보기

생물정신의학 = Korean journal of biological psychiatry, v.23 no.3, 2016년, pp.89 - 101  

이상민 (가톨릭대학교 의생명건강과학과) ,  채정호 (가톨릭대학교 의생명건강과학과)

Abstract AI-Helper 아이콘AI-Helper

Transcranial magnetic stimulation (TMS) is a safe, noninvasive and useful technique for exploring brain function. Especially, for the study of cognition, the technique can modulate a cognitive performance if the targeted area is engaged, because TMS has an effect on cortical network. The effect of T...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 100) 때문에 편측 무시, 이명, 우울증, 불안 장애, 환청 등 다양한 질환의 치료법이 될 수 있다.4) 따라서 앞에서 언급되었던 인지 기능의개선 혹은 저하의 예에서 연결될 수 있는 질환인 알츠하이머병, 주의력 장애, 조현병 등을 중심으로 TMS의 임상 적용에관해 논의해본다.
  • 본 종설에서는 정상인을 대상으로 인지 기능에 미치는 영향에 관해 연구한 문헌 73건을 찾았다. 이를 통해 두뇌 부위 별로 자극한 각 프로토콜이 어떤 인지 능력을 변화시키는지 조명함으로써, TMS가 인지 기능에 미치는 영향을 정리하고 더 나아가 이러한 인지 변화를 임상적 치료, 연구 목적에 연결하는 것에 대해 개괄하고자 한다.
  • 일시적으로 뇌의 활성을 조절해 짧은 기간 동안 인지 기능에 영향을 줄 수 있으며, 반복적으로처치하면 지속적으로 신경 세포의 가소성에 영향을 줄 수 있다. 하지만 어떤 프로토콜이 어떤 변화를 주는지 불명확하며각 하위 집단마다 다른 효과를 낼 수 있으므로, 이 종설에서는 일반인 대상으로 수행된 연구를 중심으로 다양한 뇌 영역을 특정 프로토콜로 자극하면 인지에 어떤 효과를 주는지알아보았다. 기억력, 주의력 같은 단순한 인지 과정부터 타인의 마음을 추론하거나 도덕적 판단을 하는 고등한 인지 과정까지 영향을 주는 TMS는 더 나아가 다양한 인지 기능에 어려움을 겪는 환자들에게까지 적용될 수 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
경두개 자기 자극이란 무엇인가? 경두개 자기 자극(transcranial magnetic stimulation, 이하 TMS)은 코일을 통해 생성된 자기장에 의해 기능하는 뇌 자극법이다. 이 자기장은 피험자에게 큰 고통을 주지 않고 두개골을 통과해 뇌 조직에 전기장을 생성하고, 신경세포의 과분 극 혹은 탈분극을 유도할 수 있다.
단일파 TMS란 무엇인가? 한 개의 자극이 적용되는 TMS를 단일파(single-pulse) TMS 라 하며, 다양한 간격을 두고 짝을 이뤄 적용되는 TMS를 쌍 파(paired-pulse) TMS라고 한다. 단일파 TMS는 두뇌 자극 이 행동을 어떻게 변화시키는지 인과 관계를 연구할 때 유용 하며, 2) 쌍파 TMS는 자극 간 간격(interstimulus interval, 이하 ISI)에 따라 이후 반응을 억제 혹은 촉진할 수 있다는 장점이 있다.
경두개 자기 자극의 장점은 무엇인가? 이 자기장은 피험자에게 큰 고통을 주지 않고 두개골을 통과해 뇌 조직에 전기장을 생성하고, 신경세포의 과분 극 혹은 탈분극을 유도할 수 있다. 비약물적, 비침습적인 방식이며 중심 부위를 밀리 초(millisecond) 단위로 자극할 수 있다는 장점이 있다.1)
질의응답 정보가 도움이 되었나요?

참고문헌 (121)

  1. Walsh V, Cowey A. Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 2000;1:73-79. 

  2. Rossi S, Hallett M, Rossini PM, Pascual-Leone A; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009;120:2008-2039. 

  3. Luber B, Lisanby SH. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage 2014;85 Pt 3:961-970. 

  4. Lefaucheur JP, Andre-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 2014;125:2150-2206. 

  5. Robertson EM, Theoret H, Pascual-Leone A. Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J Cogn Neurosci 2003;15:948-960. 

  6. Chen R. Studies of human motor physiology with transcranial magnetic stimulation. Muscle Nerve Suppl 2000;9:S26-S32. 

  7. Hoogendam JM, Ramakers GM, Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 2010;3:95-118. 

  8. Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 1994;117(Pt 4):847-858. 

  9. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 1997;48:1398-1403. 

  10. Vlachos A, Muller-Dahlhaus F, Rosskopp J, Lenz M, Ziemann U, Deller T. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci 2012;32:17514-17523. 

  11. Trippe J, Mix A, Aydin-Abidin S, Funke K, Benali A. ${\theta}$ burst and conventional low-frequency rTMS differentially affect GABAergic neurotransmission in the rat cortex. Exp Brain Res 2009;199:411-421. 

  12. Speer AM, Kimbrell TA, Wassermann EM, D Repella J, Willis MW, Herscovitch P, et al. Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry 2000;48:1133-1141. 

  13. Larson J, Wong D, Lynch G. Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 1986;368:347-350. 

  14. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron 2005;45:201-206. 

  15. Barbas H. Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res Bull 2000;52:319-330. 

  16. Wood JN, Grafman J. Human prefrontal cortex: processing and representational perspectives. Nat Rev Neurosci 2003;4:139-147. 

  17. Wassermann EM, Lisanby SH. Therapeutic application of repetitive transcranial magnetic stimulation: a review. Clin Neurophysiol 2001;112:1367-1377. 

  18. Skrdlantova L, Horacek J, Dockery C, Lukavsky J, Kopecek M, Preiss M, et al. The influence of low-frequency left prefrontal repetitive transcranial magnetic stimulation on memory for words but not for faces. Physiol Res 2005;54:123-128. 

  19. Turriziani P, Smirni D, Zappala G, Mangano GR, Oliveri M, Cipolotti L. Enhancing memory performance with rTMS in healthy subjects and individuals with Mild Cognitive Impairment: the role of the right dorsolateral prefrontal cortex. Front Hum Neurosci 2012;6:62. 

  20. Chambers CD, Bellgrove MA, Gould IC, English T, Garavan H, Mc-Naught E, et al. Dissociable mechanisms of cognitive control in prefrontal and premotor cortex. J Neurophysiol 2007;98:3638-3647. 

  21. Kalbe E, Schlegel M, Sack AT, Nowak DA, Dafotakis M, Bangard C, et al. Dissociating cognitive from affective theory of mind: a TMS study. Cortex 2010;46:769-80 

  22. Krause L, Enticott PG, Zangen A, Fitzgerald PB. The role of medial prefrontal cortex in theory of mind: a deep rTMS study. Behav Brain Res 2012;228:87-90. 

  23. Goh HT, Lee YY, Fisher BE. Neural correlates of dual-task practice benefit on motor learning: a repetitive transcranial magnetic stimulation study. Eur J Neurosci 2013;37:1823-1829. 

  24. Drager B, Breitenstein C, Helmke U, Kamping S, Knecht S. Specific and nonspecific effects of transcranial magnetic stimulation on picture-word verification. Eur J Neurosci 2004;20:1681-1687. 

  25. Knoch D, Brugger P, Regard M. Suppressing versus releasing a habit: frequency-dependent effects of prefrontal transcranial magnetic stimulation. Cereb Cortex 2005;15:885-887. 

  26. Basso D, Lotze M, Vitale L, Ferreri F, Bisiacchi P, Olivetti Belardinelli M, et al. The role of prefrontal cortex in visuo-spatial planning: A repetitive TMS study. Exp Brain Res 2006;171:411-415. 

  27. Bahlmann J, Beckmann I, Kuhlemann I, Schweikard A, Munte TF. Transcranial magnetic stimulation reveals complex cognitive control representations in the rostral frontal cortex. Neuroscience 2015;300:425-431. 

  28. Camus M, Halelamien N, Plassmann H, Shimojo S, O'Doherty J, Camerer C, et al. Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex decreases valuations during food choices. Eur J Neurosci 2009;30:1980-1988. 

  29. Buckholtz JW, Martin JW, Treadway MT, Jan K, Zald DH, Jones O, et al. From Blame to Punishment: Disrupting Prefrontal Cortex Activity Reveals Norm Enforcement Mechanisms. Neuron 2015;87:1369-1380. 

  30. Sandrini M, Rossini PM, Miniussi C. Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence. Neuropsychologia 2008;46:2056-2063. 

  31. Manenti R, Cappa SF, Rossini PM, Miniussi C. The role of the prefrontal cortex in sentence comprehension: an rTMS study. Cortex 2008;44:337-344. 

  32. Gaudeau-Bosma C, Moulier V, Allard AC, Sidhoumi D, Bouaziz N, Braha S, et al. Effect of two weeks of rTMS on brain activity in healthy subjects during an n-back task: a randomized double blind study. Brain Stimul 2013;6:569-575. 

  33. Preston G, Anderson E, Silva C, Goldberg T, Wassermann EM. Effects of 10 Hz rTMS on the neural efficiency of working memory. J Cogn Neurosci 2010;22:447-456. 

  34. Koch G, Oliveri M, Torriero S, Carlesimo GA, Turriziani P, Caltagirone C. rTMS evidence of different delay and decision processes in a fronto-parietal neuronal network activated during spatial working memory. Neuroimage 2005;24:34-39. 

  35. Herwig U, Abler B, Schonfeldt-Lecuona C, Wunderlich A, Grothe J, Spitzer M, et al. Verbal storage in a premotor-parietal network: evidence from fMRI-guided magnetic stimulation. Neuroimage 2003;20:1032-1041. 

  36. Hamidi M, Tononi G, Postle BR. Evaluating the role of prefrontal and parietal cortices in memory-guided response with repetitive transcranial magnetic stimulation. Neuropsychologia 2009;47:295-302. 

  37. Manenti R, Cotelli M, Calabria M, Maioli C, Miniussi C. The role of the dorsolateral prefrontal cortex in retrieval from long-term memory depends on strategies: a repetitive transcranial magnetic stimulation study. Neuroscience 2010;166:501-507. 

  38. Hawco C, Berlim MT, Lepage M. The dorsolateral prefrontal cortex plays a role in self-initiated elaborative cognitive processing during episodic memory encoding: rTMS evidence. PLoS One 2013;8:e73789. 

  39. Sole-Padulles C, Bartres-Faz D, Junque C, Clemente IC, Molinuevo JL, Bargallo N, et al. Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. A randomized sham-controlled study. Cereb Cortex 2006;16:1487-1493. 

  40. Viggiano MP, Giovannelli F, Borgheresi A, Feurra M, Berardi N, Pizzorusso T, et al. Disruption of the prefrontal cortex function by rTMS produces a category-specific enhancement of the reaction times during visual object identification. Neuropsychologia 2008;46:2725-2731. 

  41. Smith DT, Jackson SR, Rorden C. Repetitive transcranial magnetic stimulation over frontal eye fields disrupts visually cued auditory attention. Brain Stimul 2009;2:81-87. 

  42. Vanderhasselt MA, De Raedt R, Baeken C, Leyman L, D'haenen H. The influence of rTMS over the left dorsolateral prefrontal cortex on Stroop task performance. Exp Brain Res 2006;169:279-282. 

  43. Kim SH, Han HJ, Ahn HM, Kim SA, Kim SE. Effects of five daily high-frequency rTMS on Stroop task performance in aging individuals. Neurosci Res 2012;74:256-260. 

  44. Hwang JH, Kim SH, Park CS, Bang SA, Kim SE. Acute high-frequency rTMS of the left dorsolateral prefrontal cortex and attentional control in healthy young men. Brain Res 2010;1329:152-158. 

  45. Wagner M, Rihs TA, Mosimann UP, Fisch HU, Schlaepfer TE. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex affects divided attention immediately after cessation of stimulation. J Psychiatr Res 2006;40:315-321. 

  46. Vanderhasselt MA, De Raedt R, Baeken C, Leyman L, D'haenen H. The influence of rTMS over the right dorsolateral prefrontal cortex on intentional set switching. Exp Brain Res 2006;172:561-565. 

  47. Pobric G, Hamilton AF. Action understanding requires the left inferior frontal cortex. Curr Biol 2006;16:524-529. 

  48. Stadler W, Ott DV, Springer A, Schubotz RI, Schutz-Bosbach S, Prinz W. Repetitive TMS suggests a role of the human dorsal premotor cortex in action prediction. Front Hum Neurosci 2012;6:20. 

  49. Wipfli M, Felblinger J, Mosimann UP, Hess CW, Schlaepfer TE, Muri RM. Double-pulse transcranial magnetic stimulation over the frontal eye field facilitates triggering of memory-guided saccades. Eur J Neurosci 2001;14:571-575. 

  50. Gagnon G, Blanchet S, Grondin S, Schneider C. Paired-pulse transcranial magnetic stimulation over the dorsolateral prefrontal cortex interferes with episodic encoding and retrieval for both verbal and non-verbal materials. Brain Res 2010;1344:148-158. 

  51. Gagnon G, Schneider C, Grondin S, Blanchet S. Enhancement of episodic memory in young and healthy adults: a paired-pulse TMS study on encoding and retrieval performance. Neurosci Lett 2011;488:138-142. 

  52. Blumenfeld RS, Lee TG, D'Esposito M. The effects of lateral prefrontal transcranial magnetic stimulation on item memory encoding. Neuropsychologia 2014;53:197-202. 

  53. Debarnot U, Crepon B, Orriols E, Abram M, Charron S, Lion S, et al. Intermittent theta burst stimulation over left BA10 enhances virtual reality-based prospective memory in healthy aged subjects. Neurobiol Aging 2015;36:2360-2369. 

  54. Kalla R, Muggleton NG, Cowey A, Walsh V. Human dorsolateral prefrontal cortex is involved in visual search for conjunctions but not features: a theta TMS study. Cortex 2009;45:1085-1090. 

  55. Cattaneo L, Sandrini M, Schwarzbach J. State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cereb Cortex 2010;20:2252-2258. 

  56. Sakai KL, Noguchi Y, Takeuchi T, Watanabe E. Selective priming of syntactic processing by event-related transcranial magnetic stimulation of Broca's area. Neuron 2002;35:1177-1182. 

  57. Mattavelli G, Zuglian P, Dabroi E, Gaslini G, Clerici M, Papagno C. Transcranial magnetic stimulation of medial prefrontal cortex modulates implicit attitudes towards food. Appetite 2015;89:70-76. 

  58. Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE. Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 1996;383:618-621. 

  59. Demonet JF, Price C, Wise R, Frackowiak RS. Differential activation of right and left posterior sylvian regions by semantic and phonological tasks: a positron-emission tomography study in normal human subjects. Neurosci Lett 1994;182:25-28. 

  60. Seghier ML. The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 2013;19:43-61. 

  61. Sack AT, Sperling JM, Prvulovic D, Formisano E, Goebel R, Di Salle F, et al. Tracking the mind's image in the brain II: transcranial magnetic stimulation reveals parietal asymmetry in visuospatial imagery. Neuron 2002;35:195-204. 

  62. Hirnstein M, Bayer U, Ellison A, Hausmann M. TMS over the left angular gyrus impairs the ability to discriminate left from right. Neuropsychologia 2011;49:29-33. 

  63. Davey J, Cornelissen PL, Thompson HE, Sonkusare S, Hallam G, Smallwood J, et al. Automatic and controlled semantic retrieval: tms reveals distinct contributions of posterior middle temporal gyrus and angular gyrus. J Neurosci 2015;35:15230-15239. 

  64. Kiyonaga A, Korb FM, Lucas J, Soto D, Egner T. Dissociable causal roles for left and right parietal cortex in controlling attentional biases from the contents of working memory. Neuroimage 2014;100:200-205. 

  65. Uddin LQ, Molnar-Szakacs I, Zaidel E, Iacoboni M. rTMS to the right inferior parietal lobule disrupts self-other discrimination. Soc Cogn Affect Neurosci 2006;1:65-71. 

  66. Ishibashi R, Lambon Ralph MA, Saito S, Pobric G. Different roles of lateral anterior temporal lobe and inferior parietal lobule in coding function and manipulation tool knowledge: evidence from an rTMS study. Neuropsychologia 2011;49:1128-1135. 

  67. Luber B, Kinnunen LH, Rakitin BC, Ellsasser R, Stern Y, Lisanby SH. Facilitation of performance in a working memory task with rTMS stimulation of the precuneus: frequency- and time-dependent effects. Brain Res 2007;1128:120-129. 

  68. Ritterband-Rosenbaum A, Karabanov AN, Christensen MS, Nielsen JB. 10 Hz rTMS over right parietal cortex alters sense of agency during self-controlled movements. Front Hum Neurosci 2014;8:471. 

  69. Pitcher D, Garrido L, Walsh V, Duchaine BC. Transcranial magnetic stimulation disrupts the perception and embodiment of facial expressions. J Neurosci 2008;28:8929-8933. 

  70. Babiloni C, Vecchio F, Rossi S, De Capua A, Bartalini S, Ulivelli M, et al. Human ventral parietal cortex plays a functional role on visuospatial attention and primary consciousness. A repetitive transcranial magnetic stimulation study. Cereb Cortex 2007;17:1486-1492. 

  71. Cattaneo Z, Rota F, Walsh V, Vecchi T, Silvanto J. TMS-adaptation reveals abstract letter selectivity in the left posterior parietal cortex. Cereb Cortex 2009;19:2321-2325. 

  72. Cattaneo Z, Rota F, Vecchi T, Silvanto J. Using state-dependency of transcranial magnetic stimulation (TMS) to investigate letter selectivity in the left posterior parietal cortex: a comparison of TMS-priming and TMS-adaptation paradigms. Eur J Neurosci 2008;28:1924-1929. 

  73. Cooper AC, Humphreys GW, Hulleman J, Praamstra P, Georgeson M. Transcranial magnetic stimulation to right parietal cortex modifies the attentional blink. Exp Brain Res 2004;155:24-29. 

  74. Hartwigsen G, Golombek T, Obleser J. Repetitive transcranial magnetic stimulation over left angular gyrus modulates the predictability gain in degraded speech comprehension. Cortex 2015;68:100-110. 

  75. Kirschen MP, Davis-Ratner MS, Jerde TE, Schraedley-Desmond P, Desmond JE. Enhancement of phonological memory following transcranial magnetic stimulation (TMS). Behav Neurol 2006;17:187-194. 

  76. Stoeckel C, Gough PM, Watkins KE, Devlin JT. Supramarginal gyrus involvement in visual word recognition. Cortex 2009;45:1091-1096. 

  77. Lou HC, Luber B, Stanford A, Lisanby SH. Self-specific processing in the default network: a single-pulse TMS study. Exp Brain Res 2010;207:27-38. 

  78. Livingstone M, Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 1988;240:740-749. 

  79. Cattaneo Z, Vecchi T, Pascual-Leone A, Silvanto J. Contrasting early visual cortical activation states causally involved in visual imagery and short-term memory. Eur J Neurosci 2009;30:1393-1400. 

  80. Maunsell JH, Van Essen DC. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 1983; 49:1127-1147. 

  81. Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F, Mayer E. A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 2003;126(Pt 11):2381-2395. 

  82. Tsapkini K, Frangakis CE, Hillis AE. The function of the left anterior temporal pole: evidence from acute stroke and infarct volume. Brain 2011;134(Pt 10):3094-3105. 

  83. Cleret de Langavant L, Remy P, Trinkler I, McIntyre J, Dupoux E, Berthoz A, et al. Behavioral and neural correlates of communication via pointing. PLoS One 2011;6:e17719. 

  84. Saxe R, Kanwisher N. People thinking about thinking people. The role of the temporo-parietal junction in "theory of mind". Neuroimage 2003;19:1835-1842. 

  85. Campanella F, Fabbro F, Urgesi C. Cognitive and anatomical underpinnings of the conceptual knowledge for common objects and familiar people: a repetitive transcranial magnetic stimulation study. PLoS One 2013;8:e64596. 

  86. Pobric G, Jefferies E, Ralph MA. Anterior temporal lobes mediate semantic representation: mimicking semantic dementia by using rTMS in normal participants. Proc Natl Acad Sci U S A 2007;104:20137-20141. 

  87. Tadin D, Silvanto J, Pascual-Leone A, Battelli L. Improved motion perception and impaired spatial suppression following disruption of cortical area MT/V5. J Neurosci 2011;31:1279-1283. 

  88. Waterston ML, Pack CC. Improved discrimination of visual stimuli following repetitive transcranial magnetic stimulation. PLoS One 2010;5:e10354. 

  89. Gallate J, Chi R, Ellwood S, Snyder A. Reducing false memories by magnetic pulse stimulation. Neurosci Lett 2009;449:151-154. 

  90. Stolk A, Noordzij ML, Volman I, Verhagen L, Overeem S, van Elswijk G, et al. Understanding communicative actions: a repetitive TMS study. Cortex 2014;51:25-34. 

  91. Heinisch C, Dinse HR, Tegenthoff M, Juckel G, Brune M. An rTMS study into self-face recognition using video-morphing technique. Soc Cogn Affect Neurosci 2011;6:442-449. 

  92. Giardina A, Caltagirone C, Oliveri M. Temporo-parietal junction is involved in attribution of hostile intentionality in social interactions: an rTMS study. Neurosci Lett 2011;495:150-154. 

  93. Young L, Camprodon JA, Hauser M, Pascual-Leone A, Saxe R. Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. Proc Natl Acad Sci U S A 2010;107:6753-6758. 

  94. Sparing R, Mottaghy FM, Hungs M, Brugmann M, Foltys H, Huber W, et al. Repetitive transcranial magnetic stimulation effects on language function depend on the stimulation parameters. J Clin Neurophysiol 2001;18:326-330. 

  95. Pitcher D, Walsh V, Yovel G, Duchaine B. TMS evidence for the involvement of the right occipital face area in early face processing. Curr Biol 2007;17:1568-1573. 

  96. Ellison A, Battelli L, Cowey A, Walsh V. The effect of expectation on facilitation of colour/form conjunction tasks by TMS over area V5. Neuropsychologia 2003;41:1794-1801. 

  97. Mottaghy FM, Sparing R, Topper R. Enhancing picture naming with transcranial magnetic stimulation. Behav Neurol 2006;17:177-186. 

  98. Saad E, Wojciechowska M, Silvanto J. Partial dissociation in the neural bases of VSTM and imagery in the early visual cortex. Neuropsychologia 2015;75:143-148. 

  99. Hallett M. Transcranial magnetic stimulation: a primer. Neuron 2007;55:187-199. 

  100. Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng 2007;9:527-565. 

  101. Freitas C, Mondragon-Llorca H, Pascual-Leone A. Noninvasive brain stimulation in Alzheimer's disease: systematic review and perspectives for the future. Exp Gerontol 2011;46:611-627. 

  102. Cotelli M, Manenti R, Cappa SF, Zanetti O, Miniussi C. Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur J Neurol 2008;15:1286-1292. 

  103. Cotelli M, Calabria M, Manenti R, Rosini S, Zanetti O, Cappa SF, et al. Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry 2011;82:794-797. 

  104. Ahmed MA, Darwish ES, Khedr EM, El Serogy YM, Ali AM. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer's dementia. J Neurol 2012;259:83-92. 

  105. Haffen E, Chopard G, Pretalli JB, Magnin E, Nicolier M, Monnin J, et al. A case report of daily left prefrontal repetitive transcranial magnetic stimulation (rTMS) as an adjunctive treatment for Alzheimer disease. Brain Stimul 2012;5:264-266. 

  106. Bentwich J, Dobronevsky E, Aichenbaum S, Shorer R, Peretz R, Khaigrekht M, et al. Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer's disease: a proof of concept study. J Neural Transm (Vienna) 2011;118:463-471. 

  107. Rabey JM, Dobronevsky E, Aichenbaum S, Gonen O, Marton RG, Khaigrekht M. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer's disease: a randomized, double-blind study. J Neural Transm (Vienna) 2013;120:813-819. 

  108. Sitzer DI, Twamley EW, Jeste DV. Cognitive training in Alzheimer's disease: a meta-analysis of the literature. Acta Psychiatr Scand 2006;114:75-90. 

  109. Bloch Y, Harel EV, Aviram S, Govezensky J, Ratzoni G, Levkovitz Y. Positive effects of repetitive transcranial magnetic stimulation on attention in ADHD Subjects: a randomized controlled pilot study. World J Biol Psychiatry 2010;11:755-758. 

  110. Weaver L, Rostain AL, Mace W, Akhtar U, Moss E, O'Reardon JP. Transcranial magnetic stimulation (TMS) in the treatment of attention-deficit/hyperactivity disorder in adolescents and young adults: a pilot study. J ECT 2012;28:98-103. 

  111. Niederhofer H. Additional biological therapies for attention-deficit hyperactivity disorder: repetitive transcranical magnetic stimulation of 1 Hz helps to reduce methylphenidate. Clin Pract 2011;2:e8. 

  112. Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 2001;21:RC157. 

  113. Forbes NF, Carrick LA, McIntosh AM, Lawrie SM. Working memory in schizophrenia: a meta-analysis. Psychol Med 2009;39:889-905. 

  114. Barr MS, Farzan F, Rajji TK, Voineskos AN, Blumberger DM, Arenovich T, et al. Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial. Biol Psychiatry 2013;73:510-517. 

  115. Kohler CG, Walker JB, Martin EA, Healey KM, Moberg PJ. Facial emotion perception in schizophrenia: a meta-analytic review. Schizophr Bull 2010;36:1009-1019. 

  116. Wolwer W, Lowe A, Brinkmeyer J, Streit M, Habakuck M, Agelink MW, et al. Repetitive transcranial magnetic stimulation (rTMS) improves facial affect recognition in schizophrenia. Brain Stimul 2014;7:559-563. 

  117. Nestor PJ, Fryer TD, Hodges JR. Declarative memory impairments in Alzheimer's disease and semantic dementia. Neuroimage 2006;30:1010-1020. 

  118. Beversdorf DQ, Smith BW, Crucian GP, Anderson JM, Keillor JM, Barrett AM, et al. Increased discrimination of “false memories” in autism spectrum disorder. Proc Natl Acad Sci U S A 2000;97:8734-8737. 

  119. Barde LH, Buxbaum LJ, Moll AD. Abnormal reliance on object structure in apraxics' learning of novel object-related actions. J Int Neuropsychol Soc 2007;13:997-1008. 

  120. Buxbaum LJ, Kyle KM, Tang K, Detre JA. Neural substrates of knowledge of hand postures for object grasping and functional object use: evidence from fMRI. Brain Res 2006;1117:175-185. 

  121. Gold M, Adair JC, Jacobs DH, Heilman KM. Right-left confusion in Gerstmann's syndrome: a model of body centered spatial orientation. Cortex 1995;31:267-283. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로