$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

학습과 기억의 뇌파
Electroencephalography of Learning and Memory 원문보기

생물정신의학 = Korean journal of biological psychiatry, v.23 no.3, 2016년, pp.102 - 107  

전현진 (인제대학교 일산백병원 임상감정인지기능연구소) ,  이승환 (인제대학교 일산백병원 임상감정인지기능연구소)

Abstract AI-Helper 아이콘AI-Helper

This review will summarize EEG studies of learning and memory based on frequency bands including theta waves (4-7 Hz), gamma waves (> 30 Hz) and alpha waves (7-12 Hz). Authors searched and reviewed EEG papers especially focusing on learning and memory from PubMed. Theta waves are associated with acq...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 종설은 학습과 기억 처리과정의 신경상관물로서의 뇌파에 대한 것으로, 주파수 대역에 따라 구분된 정량뇌파 연구 들을 개략적으로 소개할 것이다.
  • 어둠 속에서는 이미 알파 활동이 높아져 있기 때문에 알파 활동의 추가적 증진이 불가능하고 빛에 의한 알파 억제 또한 나타나지 않은 것으로 해석된다. 알파파를 억제하는 빛에 대한 주의를 낮춤으로써 달성될 수 있는, 빛이 존재하는 상황에서의 알파 증진 가능성은, 알파파의 진정한 조건화가 존재하는지 여부에 대한 의문을 품게 했다.82) 알파파의 강화가 알파 수반성 시각 피드백이 주어진 참가자와 알파 비수반성 피드백을 받은 참가자 모두에게서 일어났다는 연구 역시 알파파에 대해 조작적 조건화가 가능 하다는 주장에 의문을 제기했다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
뇌에서 발생하는 신호의 진동(oscillations)은 무엇을 가능하게 하는가? 뇌에서 발생하는 신호의 진동(oscillations)은 멀리 떨어져 있는 뇌 영역 사이의 연결과 소통을 가능케 한다.1) 1924년 Hans Berger가 최초로 인간 뇌파를 기록한 이후, 심리생리학적 연구들은 뇌파를 심리 현상과 행동의 신경상관물(neural correlate)로서 바라볼 수 있게 해주었다.
뇌파 신호의 진동을 최초로 기록한 년도와 사람은? 뇌에서 발생하는 신호의 진동(oscillations)은 멀리 떨어져 있는 뇌 영역 사이의 연결과 소통을 가능케 한다.1) 1924년 Hans Berger가 최초로 인간 뇌파를 기록한 이후, 심리생리학적 연구들은 뇌파를 심리 현상과 행동의 신경상관물(neural correlate)로서 바라볼 수 있게 해주었다. 뇌신경과학에서 다루는 고전적인 주제인 학습과 기억 또한 뇌파 기록 및 분석 방법의 발전에 힘입어 지속적으로 연구되어 왔다.
뇌파 초기 연구는 무엇을 주로 이루었는가? 초기 연구는 알파파(7~12 Hz)와 베타파(12~30 Hz)를 중심으로 한 학습과 기억에 관여하는 주의(attention)와 각성(awakeness)에 관한 뇌파 연구에 집중되었다. 또한 깊은 수면 중에 나타나는 느린 주기와 큰 진폭을 가지는 델타파(0.
질의응답 정보가 도움이 되었나요?

참고문헌 (97)

  1. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004;304:1926-1929. 

  2. Jensen O, Kaiser J, Lachaux JP. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 2007;30:317-324. 

  3. Llinas R, Urbano FJ, Leznik E, Ramirez RR, van Marle HJ. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 2005;28:325-333. 

  4. Ribary U. Dynamics of thalamo-cortical network oscillations and human perception. Prog Brain Res 2005;150:127-142. 

  5. Schnitzler A, Gross J. Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 2005;6:285-296. 

  6. Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 2006;52:155-168. 

  7. Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 2010;90:1195-1268. 

  8. Jung R, Kornmuller AE. Eine methodik der ableitung iokalisierter potentialschwankungen aus subcorticalen hirngebieten. Eur Arch Psychiatry Clin Neurosci 1938;109:1-30. 

  9. Landfield PW, McGaugh JL, Tusa RJ. Theta rhythm: a temporal correlate of memory storage processes in the rat. Science 1972;175:87-89. 

  10. Vertes RP, Kocsis B. Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 1997;81:893-926. 

  11. Maccaferri G. Stratum oriens horizontal interneurone diversity and hippocampal network dynamics. J Physiol 2005;562(Pt 1):73-80. 

  12. Goutagny R, Jackson J, Williams S. Self-generated theta oscillations in the hippocampus. Nat Neurosci 2009;12:1491-1493. 

  13. Kepecs A, Uchida N, Mainen ZF. The sniff as a unit of olfactory processing. Chem Senses 2006;31:167-179. 

  14. Berry SD, Thompson RF. Prediction of learning rate from the hippocampal electroencephalogram. Science 1978;200:1298-1300. 

  15. Winson J. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 1978;201:160-163. 

  16. Macrides F, Eichenbaum HB, Forbes WB. Temporal relationship between sniffing and the limbic theta rhythm during odor discrimination reversal learning. J Neurosci 1982;2:1705-1717. 

  17. Mitchell SJ, Rawlins JN, Steward O, Olton DS. Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. J Neurosci 1982;2:292-302. 

  18. Mizumori SJ, Perez GM, Alvarado MC, Barnes CA, McNaughton BL. Reversible inactivation of the medial septum differentially affects two forms of learning in rats. Brain Res 1990;528:12-20. 

  19. M'Harzi M, Jarrard LE. Effects of medial and lateral septal lesions on acquisition of a place and cue radial maze task. Behav Brain Res 1992;49:159-165. 

  20. Klimesch W, Doppelmayr M, Russegger H, Pachinger T. Theta band power in the human scalp EEG and the encoding of new information. Neuroreport 1996;7:1235-1240. 

  21. Osipova D, Takashima A, Oostenveld R, Fernandez G, Maris E, Jensen O. Theta and gamma oscillations predict encoding and retrieval of declarative memory. J Neurosci 2006;26:7523-7531. 

  22. Robbe D, Buzsaki G. Alteration of theta timescale dynamics of hippocampal place cells by a cannabinoid is associated with memory impairment. J Neurosci 2009;29:12597-12605. 

  23. Rutishauser U, Ross IB, Mamelak AN, Schuman EM. Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 2010;464:903-907. 

  24. Liebe S, Hoerzer GM, Logothetis NK, Rainer G. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nat Neurosci 2012;15:456-462, S1-S2. 

  25. Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 1969;26:407-418. 

  26. Terrazas A, Krause M, Lipa P, Gothard KM, Barnes CA, McNaughton BL. Self-motion and the hippocampal spatial metric. J Neurosci 2005;25:8085-8096. 

  27. Berg RW, Kleinfeld D. Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. J Neurophysiol 2003;89:104-117. 

  28. Berg RW, Whitmer D, Kleinfeld D. Exploratory whisking by rat is not phase locked to the hippocampal theta rhythm. J Neurosci 2006; 26:6518-6522. 

  29. Otero-Millan J, Troncoso XG, Macknik SL, Serrano-Pedraza I, Martinez-Conde S. Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. J Vis 2008;8:21.1-18. 

  30. Colgin LL. Mechanisms and functions of theta rhythms. Annu Rev Neurosci 2013;36:295-312. 

  31. Winson J. Patterns of hippocampal theta rhythm in the freely moving rat. Electroencephalogr Clin Neurophysiol 1974;36:291-301. 

  32. Louie K, Wilson MA. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 2001;29:145-156. 

  33. Montgomery SM, Sirota A, Buzsaki G. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J Neurosci 2008;28:6731-6741. 

  34. Vertes RP. Memory consolidation in sleep; dream or reality. Neuron 2004;44:135-148. 

  35. Keizer AW, Verschoor M, Verment RS, Hommel B. The effect of gamma enhancing neurofeedback on the control of feature bindings and intelligence measures. Int J Psychophysiol 2010;75:25-32. 

  36. Herrmann CS, Munk MH, Engel AK. Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci 2004;8:347-355. 

  37. Keil A, Muller MM, Ray WJ, Gruber T, Elbert T. Human gamma band activity and perception of a gestalt. J Neurosci 1999;19:7152-7161. 

  38. Engelhard B, Ozeri N, Israel Z, Bergman H, Vaadia E. Inducing $\gamma$ oscillations and precise spike synchrony by operant conditioning via brain-machine interface. Neuron 2013;77:361-375. 

  39. Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 1995;18:555-586. 

  40. Rodriguez R, Kallenbach U, Singer W, Munk MH. Short- and longterm effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. J Neurosci 2004;24:10369-10378. 

  41. von Stein A, Chiang C, Konig P. Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci U S A 2000;97:14748-14753. 

  42. Spaak E, Bonnefond M, Maier A, Leopold DA, Jensen O. Layer-specific entrainment of $\gamma$ -band neural activity by the $\alpha$ rhythm in monkey visual cortex. Curr Biol 2012;22:2313-2318. 

  43. Galambos R, Makeig S, Talmachoff PJ. A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci U S A 1981;78:2643-2647. 

  44. Basar E. EEG-dynamics and evoked potentials in sensory and cognitive processing by the brain. In: Basar E, editor. Dynamics of sensory and cognitive processing by the brain. New York: Springer;1988. p.30-55. 

  45. Sheer DE. Sensory and cognitive 40-Hz event-related potentials: Behavioral correlates, brain function, and clinical application. In: Basar E, Bullock TH, editors. Brain Dynamics. New York: Springer; 1989. p.339-374. 

  46. Pantev C, Makeig S, Hoke M, Galambos R, Hampson S, Gallen C. Human auditory evoked gamma-band magnetic fields. Proc Natl Acad Sci U S A 1991;88:8996-9000. 

  47. Snyder JS, Large EW. Gamma-band activity reflects the metric structure of rhythmic tone sequences. Brain Res Cogn Brain Res 2005;24:117-126. 

  48. Keil A, Gruber T, Muller MM. Functional correlates of macroscopic high-frequency brain activity in the human visual system. Neurosci Biobehav Rev 2001;25:527-534. 

  49. Minami T, Goto K, Kitazaki M, Nakauchi S. Effects of color information on face processing using event-related potentials and gamma oscillations. Neuroscience 2011;176:265-273. 

  50. Muller MM, Junghofer M, Elbert T, Rochstroh B. Visually induced gamma-band responses to coherent and incoherent motion: a replication study. Neuroreport 1997;8:2575-2579. 

  51. Tallon C, Bertrand O, Bouchet P, Pernier J. Gamma-range activity evoked by coherent visual stimuli in humans. Eur J Neurosci 1995;7:1285-1291. 

  52. Tallon-Baudry C, Bertrand O, Delpuech C, Permier J. Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. J Neurosci 1997;17:722-734. 

  53. Lachaux JP, George N, Tallon-Baudry C, Martinerie J, Hugueville L, Minotti L, et al. The many faces of the gamma band response to complex visual stimuli. Neuroimage 2005;25:491-501. 

  54. Basar-Eroglu C, Struber D, Kruse P, Basar E, Stadler M. Frontal gamma-band enhancement during multistable visual perception. Int J Psychophysiol 1996;24:113-125. 

  55. Lee SH, Kim DW, Kim EY, Kim S, Im CH. Dysfunctional gammaband activity during face structural processing in schizophrenia patients. Schizophr Res 2010;119:191-197. 

  56. Pantev C. Evoked and induced gamma-band activity of the human cortex. Brain Topogr 1995;7:321-330. 

  57. Kaukoranta E, Reinikainen K. Somatosensory evoked magnetic fields from SI: An interpretation of the spatiotemporal field pattern and effects of stimulus repetition rate. Helsinki: Helsinki University of Technology;1985. 

  58. Pfurtscheller G, Flotzinger D, Neuper C. Differentiation between finger, toe and tongue movement in man based on 40 Hz EEG. Electroencephalogr Clin Neurophysiol 1994;90:456-460. 

  59. Salenius S, Salmelin R, Neuper C, Pfurtscheller G, Hari R. Human cortical 40 Hz rhythm is closely related to EMG rhythmicity. Neurosci Lett 1996;213:75-78. 

  60. Brown P, Salenius S, Rothwell JC, Hari R. Cortical correlate of the Piper rhythm in humans. J Neurophysiol 1998;80:2911-2917. 

  61. Gruber T, Muller MM, Keil A, Elbert T. Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clin Neurophysiol 1999;110:2074-2085. 

  62. Pulvermuller F, Birbaumer N, Lutzenberger W, Mohr B. High-frequency brain activity: its possible role in attention, perception and language processing. Prog Neurobiol 1997;52:427-445. 

  63. Tiitinen H, Sinkkonen J, Reinikainen K, Alho K, Lavikainen J, Naatanen R. Selective attention enhances the auditory 40-Hz transient response in humans. Nature 1993;364:59-60. 

  64. Martinovic J, Gruber T, Ohla K, Muller MM. Induced gamma-band activity elicited by visual representation of unattended objects. J Cogn Neurosci 2009;21:42-57. 

  65. Jensen O, Lisman JE. An oscillatory short-term memory buffer model can account for data on the Sternberg task. J Neurosci 1998;18:10688-10699. 

  66. Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J. Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci 1998;18:4244-4254. 

  67. Sauseng P, Klimesch W, Heise KF, Gruber WR, Holz E, Karim AA, et al. Brain oscillatory substrates of visual short-term memory capacity. Curr Biol 2009;19:1846-1852. 

  68. Tallon-Baudry C. Oscillatory synchrony and human visual cognition. J Physiol Paris 2003;97:355-363. 

  69. Jung-Beeman M, Bowden EM, Haberman J, Frymiare JL, Arambel-Liu S, Greenblatt R, et al. Neural activity when people solve verbal problems with insight. PLoS Biol 2004;2:E97. 

  70. Keil A, Muller MM, Gruber T, Wienbruch C, Elbert T. Human largescale oscillatory brain activity during an operant shaping procedure. Brain Res Cogn Brain Res 2001;12:397-407. 

  71. Buzsaki G, Leung LW, Vanderwolf CH. Cellular bases of hippocampal EEG in the behaving rat. Brain Res 1983;287:139-171. 

  72. Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G. Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 1995;15(1 Pt 1):47-60. 

  73. Jensen O, Lisman JE. Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learn Mem 1996;3:279-287. 

  74. Dragoi G, Buzsaki G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 2006;50:145-157. 

  75. O'Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 1993;3:317-330. 

  76. Johnson A, Redish AD. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J Neurosci 2007;27:12176-12189. 

  77. Carr MF, Karlsson MP, Frank LM. Transient slow gamma synchrony underlies hippocampal memory replay. Neuron 2012;75:700-713. 

  78. Cruikshank RM. Human occipital brain potentials as affected by intensity-duration variables of visual stimulation. J Exp Psychol 1937;21:625-641. 

  79. Jasper HH, Cruikshank RM. Electroencephalography II, Visual stimulation and the after image as affecting the occipital alpha rhythm. J Gen Psychol 1937;7:17:29-48. 

  80. Loomis AI, Harvey EN, Hobart G. Electrical potentials of the human brain. J Exp Psychol 1936;19:249. 

  81. Paskewitz DA, Orne MT. Visual effects on alpha feedback training. Science 1973;181:360-363. 

  82. Blanchard EB, Young LD. Clinical applications of biofeedback training. A review of evidence. Arch Gen Psychiatry 1974;30:573-589. 

  83. Lynch JJ, Paskewitz DA, Orne MT. Some factors in the feedback control of human alpha rhythm. Psychosom Med 1974;36:399-410. 

  84. Pfurtscheller G, Stancak A Jr, Neuper C. Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 1996;24:39-46. 

  85. Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S, et al. A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci 2005;22:2917-2926. 

  86. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 2007;53:63-88. 

  87. Bonnefond M, Jensen O. Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Curr Biol 2012;22:1969-1974. 

  88. Begleiter H, Platz A. Cortical evoked potentials to semantic stimuli. Psychophysiology 1969;6:91-100. 

  89. Johnston VS, Miller DR, Burleson MH. Multiple P3s to emotional stimuli and their theoretical significance. Psychophysiology 1986;23:684-694. 

  90. Baeyens F, Hermans D, Eelen P. The role of CS-US contingency in human evaluative conditioning. Behav Res Ther 1993;31:731-737. 

  91. Baeyens F, Vansteenwegen D, Hermans D, Eelen P. Human evaluative flavor-taste conditioning: conditions of learning and underlying processes. Psychologica Belgica 2001;41:169-186. 

  92. Rozin P, Wrzesniewski A, Byrnes D. The elusiveness of evaluative conditioning. Learn Motiv 1998;29:397-415. 

  93. Staats AW, Staats CK. Attitudes established by classical conditioning. J Abnorm Psychol 1958;57:37-40. 

  94. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 1999;29:169-195. 

  95. Heib DP, Hoedlmoser K, Anderer P, Gruber G, Zeitlhofer J, Schabus M. Oscillatory theta activity during memory formation and its impact on overnight consolidation: a missing link? J Cogn Neurosci 2015;27:1648-1658. 

  96. Lithfous S, Tromp D, Dufour A, Pebayle T, Goutagny R, Despres O. Decreased theta power at encoding and cognitive mapping deficits in elderly individuals during a spatial memory task. Neurobiol Aging 2015;36:2821-2829. 

  97. Basar E. A review of gamma oscillations in healthy subjects and in cognitive impairment. Int J Psychophysiol 2013;90:99-117. 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로