$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Single Image Depth Estimation With Integration of Parametric Learning and Non-Parametric Sampling 원문보기

멀티미디어학회논문지 = Journal of Korea Multimedia Society, v.19 no.9, 2016년, pp.1659 - 1668  

Jung, Hyungjoo (School of Electrical & Electronic Engineering, Yonsei University) ,  Sohn, Kwanghoon (School of Electrical & Electronic Engineering, Yonsei University)

Abstract AI-Helper 아이콘AI-Helper

Understanding 3D structure of scenes is of a great interest in various vision-related tasks. In this paper, we present a unified approach for estimating depth from a single monocular image. The key idea of our approach is to take advantages both of parametric learning and non-parametric sampling met...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • The proposed method consists of three components as follows: parametric model for coarse depth estimation, non-parametric sampling framework for warped depth maps, and CNN layers for depth refinement. The overall framework of the proposed method is shown in Fig.

이론/모형

  • This paper has presented depth estimation method from a single monocular scene using popular FCN and non-parametric method. FCN can extract globally plausible depth, whereas outputs of non-parametric method preserve local structures, due to warping process based on Patch Match.
본문요약 정보가 도움이 되었나요?

참고문헌 (32)

  1. X. Ren, L. Bo, and D. Fox, "RGB-(D) Scene Labeling: Features and Algorithms," Proceeding of IEEE Conference on Computer Vision and Pattern Recognition , pp. 2759-2766, 2012. 

  2. D. Lin, S. Fidler, and R. Urtasun, "Holistic Scene Understanding for 3D Object Detection with RGBD Cameras," Proceeding of IEEE International Conference on Computer Vision , pp. 1417- 1424, 2013. 

  3. J. Jeon, S. Cho, X. Tong, and S. Lee, "Intrinsic Image Decomposition Using Structure-Texture Separation and Surface Normals," Proceeding of European Conference on Computer Vision , pp. 218-233, 2014. 

  4. O. Wang, M. Lang, and M. Gross, "Stereo Brush: Interactive 2D to 3D Conversion using Discontinuous Warps," Proceedings of the 8th Eurographics Symposium on Sketch-based Interfaces and Modeling , pp. 47-54, 2011. 

  5. H. Yuan, S. Wu, P. Cheng, P. An, and S. Bao, "Nonlocal Random Walks Algorithms for Semi-Automatic 2D-to-3D Image Convertsion," IEEE Signal Processing Letters , Vol. 22, No. 3, pp. 371-374, 2015. 

  6. J. Atick, P. Griffin, and N. Redlich, "Statistical Approach to Shape fomr Shading: Reconstruction of Three-Dimensional Face Surfaces from Single Two-Dimensional Images," Neural Computation , Vol. 8, No. 6, pp. 132-1340, 1996. 

  7. R. Szeliski and P. Torr, "Geometrically Constrained Structure from Motion: Points on Planes," 3D Structure from Multiple Images of Large-Scale Environments , Springer Berlin Heideberg , pp. 171-186, 1998. 

  8. A. Oliva and A. Torralba, "Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope," International Journal of Computer Vision , Vol. 42, No. 3, pp. 145-175, 2001. 

  9. N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection," Proceeding of IEEE Computer Vision and Pattern Recognition , Vol. 1, pp. 886-893, 2005. 

  10. K. Karsch, C. Liu, and S. Kang, "Depth Extraction from Video Using Non-parametric Sampling," Proceeding of European Conference on Computer Vision , pp. 775-788, 2012. 

  11. S. Choi, D. Min, B. Ham, Y. Kim, C. Oh, and K. Sohn, "Depth Analogy: Data-Driven Approach for Single Image Depth Estimation using Gradient Samples," IEEE Transaction on Image Processing , Vol. 24, No. 12, pp. 5953-5966, 2015. 

  12. A. Saxena, M. Sun, and A. Ng, "MAKE3D: Learning 3D Scene Structure from a Single Still Image," IEEE Transaction on Pattern Analysis machine Intelligence , Vol. 31, No. 5, pp. 824-840, 2009. 

  13. D. Eigen, C. Puhrsch, and R. Fergus, "Depth Map Prediction from a Single Image Using a Multi-Scale Deep Network," Advances in Neural Information Processing Systems , pp. 2366-2374, 2014. 

  14. F. Liu, C. Shen, and G. Lin, "Deep Convolutional Neural Fields for Depth Estimation from a Single Image," Proceeding of IEEE Conference on Computer Vision and Recognition , pp. 5162-5170, 2015. 

  15. J. Long, E. Shelhamer, and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," Proceeding of IEEE Conference on Computer Vision and Pattern Recognition , pp. 3431-3440, 2015. 

  16. C. Liu, J. Yuen, and A. Torralba, "SIFT Flow: Depth Correspondence across Scenes and Its Applications," IEEE Transaction Patterns Analysis Machine Intelligence , Vol. 33, No. 33, pp. 978-994, 2011. 

  17. C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman, "PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing," ACM Transactions on Graphics , Vol. 28, No. 3, pp. 24, 2009. 

  18. J. Konrad, M. Wang, P. Ishwar, C. Wu, and D. Mukherjee, "Learning-based, Automatic 2D-to-3D Image and Video Conversion," IEEE Transaction Image Processing , Vol. 22, No. 9, pp. 3485-3496, 2013. 

  19. L. C. Chen, G. Papandreou, I. Kokkonos, K. Murphy, and A.L. Yuille, "Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs," arXiv: 1412.7062, 2014. 

  20. L. C. Chen, J. Barron, and A. L. Yulle, "Semantic Image Segmentation with Task-Specific Edge Detection Using CNNs and a Discriminatively Trained Domain Transform," arXiv: 1511.03328, 2015. 

  21. F. Liu, C. Shen, G. Lin, and I. D. Reid, "Learning Depth from Single Monocular Images using Deep Convolutional Neural Fields," Proceeding of IEEE Conference on Computer Vision and Pattern Recognition , pp. 5162-5170, 2015. 

  22. W. Chen, Z. Fu, D. Yang, and J. Dong, "Single-Image Depth Perception in the Wild" , arXiv: 1604.03901, 2016. 

  23. K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Reconstruction," arXiv: 1409.1556, 2014. 

  24. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, and L. Fei-Fei, "ImageNet Large Scale Visual Recognition Challenge," International Journal of Computer Vision , Vol. 115, No. 3, pp. 211-252, 2015. 

  25. A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," Advances in Neural Information Processing Systems , pp. 1097-1105, 2012. 

  26. J. Kim, J. Lee, and K. Lee, "Accurate Image Super-Resolution Using Very Deep Convolutional Networks," arXiv: 1511.04587, 2015. 

  27. N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, "Indoor Segmentation and Support Inference from RGBD Images," Proceeding of European Conference on Computer Vision , pp. 746-760, 2012. 

  28. S. Loffe and c. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift," Proceeding of International Conference on Machine Learning , pp. 448-456, 2015. 

  29. J. Kopf, M.F. Cohen, D. Lischinski, and M. Uyttendaele, "Joint Bilateral Upsampling," ACM Transactions on Graphics , Vol. 26, No. 3, pp. 96, 2007. 

  30. K. He, J. Sun, and X. Tang, "Guided Image Filtering," Proceeding of European Conference on Computer Vision , pp. 1-14, 2010. 

  31. D. Lee, and S. Kwon, "A Recognition Method for Moving Objects Using Depth and Color Information," Journal of Korea Multimedia Society , Vol. 19, No. 4, pp. 681- 688, 2016. 

  32. S. Kim, and H. Kang, "Semantic Segmentation of Indoor Scenes Using Depth Superpixel," Journal of Korea Multimedia Society , Vol. 19, No. 3, pp. 531-538, 2016. 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로