$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Rapid Thermal Annealing at the Temperature of 650℃ Ag Films on SiO2 Deposited STS Substrates 원문보기

Applied science and convergence technology, v.26 no.6, 2017년, pp.208 - 213  

Kim, Moojin (Department of Renewable Energy, Jungwon University) ,  Kim, Kyoung-Bo (Department of Metallurgical & Materials Engineering, Inha Technical College)

Abstract AI-Helper 아이콘AI-Helper

Flexible opto-electronic devices are developed on the insulating layer deposited stainless steel (STS) substrates. The silicon dioxide ($SiO_2$) material as the diffusion barrier of Fe and Cr atoms in addition to the electrical insulation between the electronic device and STS is processed...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Based on the XPS result, we additionally performed APT analysis for investigating the detailed distribution of Si, O, and Ag atoms in a discontinuous Ag island. APT is analysis technique for both 3D imaging and chemical composition measurements at the atomic scale (around 0.
  • In this work, it was studieds the formation and application of Ag layer on silicon dioxide (SiO2) deposited STS sheets annealed at 650℃ using rapid thermal annealing (RTA) method.

대상 데이터

  • The measurement were carried out with a dual and focused ion beam using a UV laser (λ = 343 nm).
본문요약 정보가 도움이 되었나요?

참고문헌 (40)

  1. K. S. Lee, J. W. Shin, J. H. Park, J. H. Lee, C. W. Joo, J. I. Lee, D. H. Cho, J. T. Lim, M. C. Oh, B. K. Ju, and J. H. Moon, A Light Scattering Layer for Internal Light Extraction of Organic Light-Emitting Diodes Based on Silver Nanowires, ACS Appl. Mater. Interfaces 8, 17409 (2016). 

  2. G. H. Jin, S.M. Choi, M. J. Kim, S. C. Kim, and J. H. Song, New Pixel Circuit Design Employing an Additional Pixel Line Insertion in AMOLED Displays Composed by Excimer Laser-Crystallized TFTs, J. Display Technol. 8, 479 (2012). 

  3. J. Kratochvil, A. Kuzminova, O. Kylian, and H. Biederman, Comparison of magnetron sputtering and gas aggregation nanoparticle source used for fabrication of silver nanoparticle films, Surf. Coat. Technol. 275, 296 (2015). 

  4. C. Charton and M. Fahland, Optical and electrical properties of sputtered Ag films on PET webs, Surf. Coat. Technol. 142-144, 175 (2001). 

  5. J. Lv, Effect of wettability on surface morphologies and optical properties of Ag thin films grown on glass and polymer substrates by thermal evaporation, Appl. Surf. Sci. 273, 215 (2013). 

  6. A. Inberg, P. Livshits, Z. Zalevsky, and Y. Shacham-Diamand, Electroless deposition of silver thin films on gold nanoparticles catalyst for micro and nanoelectronics applications, Microelectron. Eng. 98, 570 (2012). 

  7. R. Krajcar, J. Siegel, P. Slepicka, P. Fitl, and V. Svorcik, Silver nanowires prepared on PET structured by laser irradiation, Mater. Lett. 117, 184 (2014). 

  8. J. S. Cho, J. S. Yoo, J. H. Park, K. S. Shin, and K. H. Yoon, Fabrication of dc sputtered Ag/Al:Si bilayers with improved optical reflectance, Thin Solid Films 529, 45 (2013). 

  9. M. Maqbool, T. Khan, Atomic force microscopy and XRD analysis of silver films deposited by thermal evaporation, Int. J. Mod. Phys. B 20, 217 (2006). 

  10. J. Lin, H. Lan, W. Zheng, Y. Qu, and F. Lai, Silver nanoparticles films deposited on AAO templates by thermal evaporation for surface-enhanced Raman scattering of R6G, Nano 07, 1250048 (2012). 

  11. D. R. Sahu, S. Y. Lin, and J. L. Huang, Study on the electrical and optical properties of Ag/Al-doped ZnO coatings deposited by electron beam evaporation, Appl. Surf. Sci. 253, 4886 (2007). 

  12. Y. Jing, H. Wang, J. Zhao, H. Yi, and X. Wang, Pulsed laser deposition of Ag nanoparticles on titanium hydroxide/oxide nanobelt arrays for highly sensitive surface-enhanced Raman spectroscopy, Appl. Surf. Sci. 347, 499 (2015). 

  13. Z. Yuan, N.H. Dryden, J.J. Vittal, R.J. Puddephatt, Chemical vapor deposition of silver, Chem. Mater. 7, 1696 (1995). 

  14. R. Sivasubramanian and M. V. Sangaranarayanan, Electrodeposition of silver nanostructures: from polygons to dendrites, Cryst. Eng. Comm. 15, 2052 (2013). 

  15. S. Kundu, S. Hazra, S. Banerjee, M. K. Sanyal, S. K. Mandal, S. Chaudhuri, and A. K. Pa, Morphology of thin silver film grown by dc sputtering on Si(001), J. Phys. D: Appl. Phys. 31, L73 (1998). 

  16. W. M. Kim, D. Y. Ku, K. S. Lee, and B. Cheong, Effect of oxygen content and deposition temperature on the characteristics of thin silver films deposited by magnetron sputtering, Appl. Surf. Sci. 257 1, 1331 (2010). 

  17. P. Asanithi, S. Chaiyakun, and P. Limsuwan, Growth of Silver Nanoparticles by DC Magnetron Sputtering, J. Nanomater. 2012, 963609 (2012). 

  18. J. Zuo, Deposition of Ag nanostructures on $TiO_{2}$ thin films by RF magnetron sputtering, Appl. Surf. Sci. 256, 7096 (2010). 

  19. L. S. Kibis, A. I. Stadnichenko, E. M. Pajetnov, S. V. Koscheev, V. I. Zaykovskii, and A. I. Boronin, The investigation of oxidized silver nanoparticles prepared by thermal evaporation and radio-frequency sputtering of metallic silver under oxygen, Appl. Surf. Sci. 257, 404 (2010). 

  20. M. J. Kim, K. B. Kim, D. Y. Lee, S. N. Lee, and J. M. Lee, Effects of rapid thermal annealing for E-beam evaporated Ag films on stainless steel substrates, Surf. Coat. Technol. 278, 18 (2015). 

  21. A. K. Santra, B. K. Min, and D. W. Goodman, Ag clusters on ultra-thin, ordered $SiO_2$ films, Surf. Sci. 515, L475 (2002). 

  22. R. Yu, T. Shibayama, X. Meng, S. Takayanagi, Y. Yoshida, S. Yatsu, and S. Watanabe, Effects of nanosecond-pulsed laser irradiation on nanostructure formation on the surface of thin Au films on $SiO_2$ glass substrates, Appl. Surf. Sci. 289, 274 (2014). 

  23. F. M .F. de Groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, and H. Petersen, Oxygen 1s x-ray-absorption edges of transition-metal oxides, Phys. Rev. B 40, 5715 (1989). 

  24. T. Shedel-Niedrig, X. Bao, M. Muhler, and R. Schlogl, Surface-Embedded Oxygen: Electronic Structure of Ag(111) and Cu(poly) Oxidised at Atmospheric Pressure, Ber. Bunsenges. Phys. Chem. 101, 994 (1997). 

  25. A. Toneva, Ts. Marinova, and V. Krastev, XPS investigation of a-Si:H thin films after light soaking, J. Lumin. 80, 455 (1999). 

  26. M. A. M. Hassan, I. R. Agool, and L. M. Raoof, Silver oxide nanostructure prepared on porous silicon for optoelectronic application, Appl. Nanosci. 4, 429 (2014). 

  27. M. W. Allen, S. M. Durbin, and J. B. Metson, Silver oxide Schottky contacts on n-type ZnO, Appl. Phys. Lett. 91, 053512 (2007). 

  28. H. K. Kim, T. Y. Seong, K. K. Kim, S. J. Park, Y. S. Yoon, and I. Adesida, Mechanism of Nonalloyed Al Ohmic Contacts to n-Type ZnO:Al Epitaxial Layer, Jpn. J. Appl. Phys. 43, 976 (2004). 

  29. J. F. Pierson and C. Rousselot, Stability of reactively sputtered silver oxide films, Surf. Coat. Technol. 200, 276 (2005). 

  30. J. F. Pierson, D. Wiederkehr, and A. Billard, Reactive magnetron sputtering of copper, silver, and gold, Thin Solid Films 478, 196 (2005). 

  31. U. K. Barik, S. Srinivasan, C. L. Nagendra, and A. Subrahmanyam, Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen, Thin Solid Films 429, 129 (2003). 

  32. A. J. Varkey and A. F. Fort, Some optical properties of silver peroxide (AgO) and silver oxide ( $Ag_2O$ ) films produced by chemical-bath deposition, Sol. Energy Mater. Sol. Cells 29, 253 (1993). 

  33. B. E. BreyfogIe, C. J. Hung, M. G. Shumsky, and J. A. Switzer, Electrodeposition of silver(II) oxide films, J. Electrochem. Soc. 143, 2741 (1996). 

  34. S. B. Rivers, G. Bernhardt, M. W. Wright, D. J. Frankel, M. M. Steeves, and R. J. Lad, Structure, conductivity, and optical absorption of $Ag_{2-x}O$ films, Thin Solid Films 515, 8684 (2007). 

  35. F. X. Bock, T. M. Christensen, S. B. Rivers, L. D. Doucette, and R. J. Lad, Growth and structure of silver and silver oxide thin films on sapphire, Thin Solid Films 468, 57 (2004). 

  36. Y. Suzuki, Y. Ojima, Y. Fukui, H. Fazyia, and K. Sagisaka, Post-annealing temperature dependence of infrared absorption enhancement of polymer on evaporated silver films, Thin Solid Films 515 (5), 3073 (2007). 

  37. J. S. Cho, J. S. Yoo, J. H. Park, K. S. Shin, and K. H. Yoon, Fabrication of dc sputtered Ag/Al:Si bilayers with improved optical reflectance, Thin Solid Films 529 (2013) 45-49. 

  38. H. Nakashima, Y. Sasaki, R. Osozawa, Y. Kon, H. Nakazawa, and Y. Suzuki, Surface enhanced infrared absorption spectra on pulsed laser deposited silver island films, Thin Solid Films 536, 166 (2013). 

  39. W. Wu, M. Wu, Z. Sun, G. Li, Y. Ma, X. Liu, X. Wang, and X. Chen, Morphology controllable synthesis of silver nanoparticles: Optical properties study and SERS application, J. Alloys and Comp. 579, 117 (2013). 

  40. R. Krajcar, J. Siegel, P. Slepicka, P. Fitl, and V. Svorcik, Silver nanowires prepared on PET structured by laser irradiation, Mater. Lett. 117, 184 (2014). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로