$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Genomic Insights and Its Comparative Analysis with Yersinia enterocolitica Reveals the Potential Virulence Determinants and Further Pathogenicity for Foodborne Outbreaks 원문보기

Journal of microbiology and biotechnology, v.27 no.2, 2017년, pp.262 - 270  

Gnanasekaran, Gopalsamy (Department of Agricultural Biotechnology, Seoul National University) ,  Na, Eun Jung (Department of Agricultural Biotechnology, Seoul National University) ,  Chung, Han Young (Department of Agricultural Biotechnology, Seoul National University) ,  Kim, Suyeon (Department of Agricultural Biotechnology, Seoul National University) ,  Kim, You-Tae (Food-borne Pathogen Omics Research Center (FORC), Seoul National University) ,  Kwak, Woori (Department of Agricultural Biotechnology, Seoul National University) ,  Kim, Heebal (Department of Agricultural Biotechnology, Seoul National University) ,  Ryu, Sangryeol (Department of Agricultural Biotechnology, Seoul National University) ,  Choi, Sang Ho (Department of Agricultural Biotechnology, Seoul National University) ,  Lee, Ju-Hoon (Food-borne Pathogen Omics Research Center (FORC), Seoul National University)

Abstract AI-Helper 아이콘AI-Helper

Yersinia enterocolitica is a well-known foodborne pathogen causing gastrointestinal infections worldwide. The strain Y. enterocolitica FORC_002 was isolated from the gill of flatfish (plaice) and its genome was sequenced. The genomic DNA consists of 4,837,317 bp with a GC content of 47.1%, and is pr...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

대상 데이터

  • enterocolitica were also present (Ail, Inv, Yst, TTSS, Yops, siderophore receptor, and RTX toxins) in the genome of strain FORC_002 and corresponded with its identity as a pathogen [49]. The GIs were identified in the genome of strain FORC_002, which includes a novel TTSS, Yersinia secretion apparatus (Ysa), an ATP binding transporter system, an insecticidal toxin complex (TC) cluster, an RTX toxin cluster, a colicin E6 immunity protein cluster, a flagellum gene cluster, a respiration control protein (arcA), and six prophage-related genes. The genome also has putative VFs such as novel TTSS, RTX-like toxin, and Yst (heat labile enterotoxin) in genomic pathogenicity islands, and this suggests that strain FORC_002 regulates host gene expression during infection in humans and animals.
  • The plasmid pFORC2 (Fig. 3B) consists of 101,782 bp with a GC content of 42.8% and a total of 105 predicted ORFs. Among the predicted ORFs, almost 48 ORFs (46%) were annotated as hypothetical genes, and the remaining 57 ORFs (54%) were assigned as functional genes.

이론/모형

  • All complete genome sequences of Y. enterocolitica strains were obtained from the NCBI Genome database (http://www.ncbi. nlm.nih.gov/genome/genomes/1041) and their ANI value was calculated using the unweighted pair group method. ANI was calculated between two genomes, where the query genome was spliced into 1,020 nucleotide fragments, each of which was blasted against the subject genome [40].
  • The tree uses sequences aligned by ClustalW, uses the Jukes-Cantor corrected distance model to construct a distance matrix based on alignment model positions without the use of alignment inserts, and uses a minimum comparable position of 200. Phylogenetic analyses were performed using MEGA6 [58]. The building of the tree also involves a bootstrapping process repeated 1,000 times to generate a majority consensus tree.
  • To identify the closest genome sequences, the genome tree was constructed using R software [41] based on ANI values. The genomic islands (GIs) were identified using the SIGI-HMM algorithm in Colombo ver. 3.8 [42]. The genome properties of strain FORC_002 were compared with published genomes of strains 8081, 105.
  • enterocolitica FORC_002 as being related to other type strains within the genus Yersinia. The tree uses sequences aligned by ClustalW, uses the Jukes-Cantor corrected distance model to construct a distance matrix based on alignment model positions without the use of alignment inserts, and uses a minimum comparable position of 200. Phylogenetic analyses were performed using MEGA6 [58].
본문요약 정보가 도움이 되었나요?

참고문헌 (58)

  1. Tauxe RV. 1997. Emerging foodborne diseases: an evolving public health challenge. Emerg. Infect. Dis. 3: 425. 

  2. Toma S, Lafleur L. 1974. Survey on the incidence of Yersinia enterocolitica infection in Canada. J. Appl. Microbiol. 28: 469-473. 

  3. Kay BA, Wachsmuth K, Gemski P, Feeley JC, Quan TJ, Brenner D. 1983. Virulence and phenotypic characterization of Yersinia enterocolitica isolated from humans in the United States. J. Clin. Microbiol. 17: 128-138. 

  4. Zadernowska A, Chajecka-Wierzchowska W, Laniewska-Trokenheim L. 2014. Yersinia enterocolitica: a dangerous, but often ignored, foodborne pathogen. Food Rev. Int. 30: 53-70. 

  5. Scott E. 2003. Food safety and foodborne disease in 21st century homes. Can. J. Infect. Dis. 14: 277. 

  6. Edward JB. 1997. Yersinia enterocolitica: the charisma continues. Clin. Microbiol. Rev. 10: 257-276. 

  7. Tauxe RV. 2002. Emerging foodborne pathogens. Int. J. Food Microbiol. 78: 31-41. 

  8. Bucher M, Meyer C, Grotzbach B, Wacheck S, Stolle A, Fredriksson-Ahomaa M. 2008. Epidemiological data on pathogenic Yersinia enterocolitica in Southern Germany during 2000-2006. Foodborne Pathog. Dis. 5: 273-280. 

  9. Boqvist S, Pettersson H, Svensson A, Andersson Y. 2009. Sources of sporadic Yersinia enterocolitica infection in children in Sweden, 2004: a case-control study. Epidemiol. Infect. 137: 897-905. 

  10. Butler T, Islam M, Islam M, Azad A, Huq M, Speelman P, Roy S. 1984. Isolation of Yersinia enterocolitica and Y. intermedia from fatal cases of diarrhoeal illness in Bangladesh. Trans. R. Soc. Trop. Med. Hyg. 78: 449-450. 

  11. Kanan T, Abdulla Z. 2009. Isolation of Yersinia spp. from cases of diarrhoea in Iraqi infants and children. East Mediterr. Health J. 15: 276-284. 

  12. Soltan-Dallal M, Moezardalan K. 2003. Frequency of Yersinia species infection in paediatric acute diarrhoea in Tehran. East Mediterr. Health J. 10: 152-158. 

  13. Okwori AE, Martinez PO, Fredriksson-Ahomaa M, Agina SE, Korkeala H. 2009. Pathogenic Yersinia enterocolitica 2/O:9 and Yersinia pseudotuberculosis 1/O:1 strains isolated from human and non-human sources in the Plateau State of Nigeria. Food Microbiol. 26: 872-875. 

  14. Wauters G, Aleksic S, Charlier J, Schulze G. 1991. Somatic and flagellar antigens of Yersinia enterocolitica and related species. Contrib. Microbiol. Immunol. 12: 239. 

  15. Bottone EJ. 1999. Yersinia enterocolitica: overview and epidemiologic correlates. Microbes Infect. 1: 323-333. 

  16. Brubaker RR. 1991. Factors promoting acute and chronic diseases caused by yersiniae. Clin. Microbiol. Rev. 4: 309-324. 

  17. Cornelis GR, Boland A, Boyd AP, Geuijen C, Iriarte M, Neyt C, et al. 1998. The virulence plasmid of Yersinia, an antihost genome. Microbiol. Mol. Biol. Rev. 62: 1315-1352. 

  18. Bottone EJ. 1997. Yersinia enterocolitica: the charisma continues. Clin. Microbiol. Rev. 10: 257-276. 

  19. Miller V, Falkow S. 1988. Evidence for two genetic loci in Yersinia enterocolitica that can promote invasion of epithelial cells. Infect. Immun. 56: 1242-1248. 

  20. Miller V, Farmer J, Hill W, Falkow S. 1989. The ail locus is found uniquely in Yersinia enterocolitica serotypes commonly associated with disease. Infect. Immun. 57: 121-131. 

  21. Cornelis G, Laroche Y, Balligand G, Sory M-P, Wauters G. 1987. Yersinia enterocolitica, a primary model for bacterial invasiveness. Rev. Infect. Dis. 9: 64-87. 

  22. Cornelis GR. 2006. The type III secretion injectisome. Nat. Rev. Microbiol. 4: 811-825. 

  23. Galan JE, Collmer A. 1999. Type III secretion m achines: bacterial devices for protein delivery into host cells. Science 284: 1322-1328. 

  24. Jin Q, Thilmony R, Zwiesler-Vollick J, He S-Y. 2003. Type III protein secretion in Pseudomonas syringae. Microbes Infect. 5: 301-310. 

  25. Galindo CL, Rosenzweig JA, Kirtley ML, Chopra AK. 2011. Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in human yersiniosis. J. Pathog. 2011: 1-16. 

  26. Heise T, Dersch P. 2006. Identification of a domain in Yersinia virulence factor YadA that is crucial for extracellular matrixspecific cell adhesion and uptake. Proc. Natl. Acad. Sci. USA 103: 3375-3380. 

  27. Kirjavainen V, Jarva H, Biedzka-Sarek M, Blom AM, Skurnik M, Meri S. 2008. Yersinia enterocolitica serum resistance proteins YadA and Ail bind the complement regulator C4b-binding protein. PLoS Pathog. 4: e1000140. 

  28. Brodsky IE, Medzhitov R. 2008. Reduced secretion of YopJ by Yersinia limits in vivo cell death but enhances bacterial virulence. PLoS Pathog. 4: e1000067. 

  29. Home SM, Pruss BM. 2006. Global gene regulation in Yersinia enterocolitica: effect of FliA on the expression levels of flagellar and plasmid-encoded virulence genes. Arch. Microbiol. 185: 115-126. 

  30. Singh I, Virdi JS. 2005. Interaction of Yersinia enterocolitica biotype 1A strains of diverse origin with cultured cells in vitro. Jpn. J. Infect. Dis. 58: 31-33. 

  31. Travers KJ, Chin C-S, Rank DR, Eid JS, Turner SW. 2010. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res. 38: e159. 

  32. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563-569. 

  33. Carneiro MO, Russ C, Ross MG, Gabriel SB, Nusbaum C, DePristo MA. 2012. Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics 13: 375. 

  34. Delcher AL, Salzberg SL, Phillippy AM. 2003. Using MUMmer to identify similar regions in large sequence sets. Curr. Protoc. Bioinformatics 10: Unit 10.3. 

  35. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98. 

  36. Disz T, Akhter S, Cuevas D, Olson R, Overbeek R, Vonstein V, et al. 2010. Accessing the SEED genome databases via web services API: tools for programmers. BMC Bioinformatics 11: 319. 

  37. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75. 

  38. Wu S, Zhu Z, Fu L, Niu B, Li W. 2011. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12: 444. 

  39. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. 2009. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25: 119-120. 

  40. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57: 81-91. 

  41. Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290. 

  42. Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, et al. 2006. Score-based prediction of genomic islands in prokaryotic genomes using Hidden Markov models. BMC Bioinformatics 7: 142. 

  43. Bissett ML, Powers C, Abbott SL, Janda JM. 1990. Epidemiologic investigations of Yersinia enterocolitica and related species: sources, frequency, and serogroup distribution. J. Clin. Microbiol. 5: 910-912 

  44. Sedgwick AK, Tilton RC. 1971. Biochemical and serological characteristics of a Yersinia enterocolitica isolate. Appl. Microbiol. 21: 383-384. 

  45. Kanazawa Y, Kuramata T. 1976. Drug sensitivity of Yersinia enterocolitica and Yersinia pseudotuberculosis. Jpn. J. Antibiot. 29: 366-376. 

  46. Yao P, Chen X, Yan Y, Liu F, Zhang Y, Guo X, Xu B. 2014. Glutaredoxin 1, glutaredoxin 2, thioredoxin 1, and thioredoxin peroxidase 3 play important roles in antioxidant defense in Apis cerana cerana. Free Radic. Biol. Med. 68: 335-346. 

  47. Carlin A, Shi W, Dey S, Rosen BP. 1995. The ars operon of Escherichia coli confers arsenical and antimonial resistance. J. Bacteriol. 177: 981-986. 

  48. Cornelis G, Sluiters C, De Rouvroit CL, Michiels T. 1989. Homology between VirF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J. Bacteriol. 171: 254-262. 

  49. Fuchs TM, Bresolin G, Marcinowski L, Schachtner J, Scherer S. 2008. Insecticidal genes of Yersinia spp.: taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution. BMC Microbiol. 8: 214. 

  50. Venecia K, Young GM. 2005. Environmental regulation and virulence attributes of the Ysa type III secretion system of Yersinia enterocolitica biovar 1B. Infect. Immun. 73: 5961-5977. 

  51. Pepe JC, Miller VL. 1993. Yersinia enterocolitica invasin: a primary role in the initiation of infection. Proc. Natl. Acad. Sci. USA 90: 6473-6477. 

  52. Schulte R, Kerneis S, Klinke S, Bartels H, Preger S, Kraehenbuhl JP, et al. 2000. Translocation of Yersinia enterocolitica across reconstituted intestinal epithelial monolayers is triggered by Yersinia invasin binding to ${\beta}1$ integrins apically expressed on M-like cells. Cell. Microbiol. 2: 173-185. 

  53. Fabrega A, Vila J. 2012. Yersinia enterocolitica: pathogenesis, virulence and antimicrobial resistance. Enferm. Infecc. Microbiol. Clin. 30: 24-32. 

  54. Nishi J, Sheikh J, Mizuguchi K, Luisi B, Burland V, Boutin A, et al. 2003. The export of coat protein from enteroaggregative Escherichia coli by a specific ATP-binding cassette transporter system. J. Biol. Chem. 278: 45680-45689. 

  55. Bowen D, Rocheleau TA, Blackburn M, Andreev O, Golubeva E, Bhartia R. 1998. Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280: 2129-2132. 

  56. Fallman M, Deleuil F, McGee K. 2001. Resistance to phagocytosis by Yersinia. Int. J. Med. Microbiol. 291: 501-509. 

  57. Grissa I, Vergnaud G, Pourcel C. 2007. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8: 172. 

  58. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로