$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Enhanced Production of Gamma-Aminobutyric Acid by Optimizing Culture Conditions of Lactobacillus brevis HYE1 Isolated from Kimchi, a Korean Fermented Food 원문보기

Journal of microbiology and biotechnology, v.27 no.3, 2017년, pp.450 - 459  

Lim, Hee Seon (Department of Life Sciences, Graduate School of Incheon National University) ,  Cha, In-Tae (Division of Bioengineering, Incheon National University) ,  Roh, Seong Woon (Biological Disaster Analysis Group, Korea Basic Science Institute) ,  Shin, Hae-Hun (Division of Foodservice Industry, Baekseok Culture University) ,  Seo, Myung-Ji (Department of Life Sciences, Graduate School of Incheon National University)

Abstract AI-Helper 아이콘AI-Helper

This study evaluated the effects of culture conditions, including carbon and nitrogen sources, L-monosodium glutamate (MSG), and initial pH, on gamma-aminobutyric acid (GABA) production by Lactobacillus brevis HYE1 isolated from kimchi, a Korean traditional fermented food. L. brevis HYE1 was screene...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The full-length gad gene from genomic DNA was also amplified by using the designed primer sets based on previously reported gad sequences of several L. brevis strains: MME-63 (5’- ATGGCTATGTTGTATGGA-3’) and MME-64 (5’-TTAGTGCGT GAACCCGTA-3’).
  • The optimal level of each variable and the effect of their interactions on GABA production as a function of two variables were analyzed by plotting three-dimensional response surface curves (Fig. 5). The response surface representing GABA production is a function of the values of two variables with other variables at an optimal level.
  • brevis HYE1 were also investigated via the conventional OFAT method to determine carbon and nitrogen sources and identify fermentation factors with significant effects on GABA production. Thereafter, the optimal concentration of each fermentation factor, including the selected carbon and nitrogen sources, exogenous L-monosodium glutamate (MSG), and initial pH, were further determined to enhance GABA production by L. brevis HYE1 using statistical RSM while employing a three-level, four-variable BBD.
  • Optimization of GABA production by the RSM model could be dependent on GABA-producing microorganisms, in particular species, and variables used in the model. Therefore, it was meaningful to optimize GABA production by L. brevis HYE1 via the RSM model with four variables, including the concentrations of maltose, tryptone, and initial MSG and the initial pH, in this study. Further studies are needed on culture optimization using medium additives such as pyridoxal-5’-phosphate as a coenzyme of GAD, Tween-80 as a growth-stimulating factor for LAB, and sulfate ions for enhancing GAD activity [20, 40].

데이터처리

  • Various assemblies used in this design are shown in Table 1. Analysis of variance (ANOVA) and regression analysis were performed with the SAS software package (SAS Institute Inc., USA).
  • The significance of the regression coefficient was demonstrated by ANOVA analysis (Table 2). A value of “Model Prob > F” less than 0.

이론/모형

  • RSM with the BBD model using three coded levels was employed for determining the optimal culture conditions of the four variables monitored in the OFAT method. The behavior of the system was explained by the following quadratic equation.
  • Recently, culture conditions of Lc. lactis strain B isolated from kimchi and L. plantarum Taj-Apis362 from honeybees were optimized for GABA production by the RSM method based on the Box-Behnken design (BBD) and central composite design (CCD), respectively [23, 24].
본문요약 정보가 도움이 되었나요?

참고문헌 (41)

  1. Manyam BV, Katz L, Hare TA, Kaniefski K, Tremblay RD. 1981. Isoniazid-induced elevation of CSF GABA levels and effects on chorea in Huntington's disease. Ann. Neurol. 10: 35-37. 

  2. Ueno H. 2000. Enzymatic and structural aspects on glutamate decarboxylase. J. Mol. Catal. B Enzym. 10: 67-79. 

  3. Tsai JS, Lin YS, Pan BS, Chen TJ. 2006. Antihypertensive peptides and ${\gamma}$ -aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk. Process Biochem. 41: 1282-1288. 

  4. Wong CG, Bottiglieri T, Snead OC III. 2003. GABA, ${\gamma}$ -hydroxybutyric acid, and neurological disease. Ann Neurol. 54: S3-S12. 

  5. Kim JY, Lee MY, Ji GE, Lee YS, Hwang KT. 2009. Production of ${\gamma}$ -aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int. J. Food Microbiol. 130: 12-16. 

  6. Dhakal R, Bajpai VK, Baek KH. 2012. Production of GABA ( ${\gamma}$ -aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol. 43: 1230-1241. 

  7. Hwanhlem N, Watthanasakphuban N, Riebroy S, Benjakul S, H-Kittikun A, Maneerat S. 2010. Probiotic lactic acid bacteria from kung-som: isolation, screening, inhibition of pathogenic bacteria. Int. J. Food Sci. Technol. 45: 594-601. 

  8. Naidu AS, Bidlack WR, Clemens RA. 1999. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr. 39: 13-126. 

  9. Di Cagno R, Mazzacane F, Rizzello CG, De Angelis M, Giuliani G, Meloni M, et al. 2010. Synthesis of ${\gamma}$ -aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications. Appl. Microbiol. Biotechnol. 86: 731-741. 

  10. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M. 2007. Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol. 73: 7283-7290. 

  11. Nomura M, Kimoto H, Someya Y, Furukawa S, Suzuki I. 1998. Production of ${\gamma}$ -aminobutyric acid by cheese starters during cheese ripening. J. Dairy Sci. 81: 1486-1491. 

  12. Cho YR, Chang JY, Chang HC. 2007. Production of gammaaminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17: 104-109. 

  13. Seo MJ, Nam YD, Lee SY, Park SL, Yi SH, Lim SI. 2013. Expression and characterization of a glutamate decarboxylase from Lactobacillus brevis 877G producing ${\gamma}$ -aminobutyric acid. Biosci. Biotechnol. Biochem. 77: 853-856. 

  14. Hiraga K, Ueno Y, Sukontasing S, Tanasupawat S, Oda K. 2008. Lactobacillus senmaizukei sp. nov., isolated from Japanese pickle. Int. J. Syst. Evol. Microbiol. 58: 1625-1629. 

  15. Seo MJ, Lee JY, Nam YD, Lee SY, Park SL, Yi SH, et al. 2013. Production of ${\gamma}$ -aminobutyric acid by Lactobacillus brevis 340G isolated from kimchi and its application to skim milk. Food Eng. Prog. 17: 418-423. 

  16. Kumar P, Satyanarayana T. 2007. Optimization of culture variables for improving glucoamylase production by alginateentrapped Thermomucor indicae-seudaticae using statistical methods. Bioresour. Technol. 98: 1252-1259. 

  17. Sun Y, Li T, Yan J, Liu J. 2010. Technology optimization for polysaccharides (POP) extraction from the fruiting bodies of Pleurotus ostreatus by Box-Behnken statistical design. Carbohydr. Polym. 80: 242-247. 

  18. Zhong K, Wang Q. 2010. Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology. Carbohydr. Polym. 80: 19-25. 

  19. Survase SA, Annapure US, Singhal RS. 2009. Statistical optimization for improved production of cyclosporine A in solid-state fermentation. J. Microbiol. Biotechnol. 19: 1385-1392. 

  20. Binh TTT, Ju WT, Jung WJ, Park RD. 2014. Optimization of ${\gamma}$ -amino butyric acid production in a newly isolated Lactobacillus brevis. Biotechnol. Lett. 36: 93-98. 

  21. Kook MC, Seo MJ, Cheigh CI, Pyun YR, Cho SC, Park H. 2010. Enhanced production of gamma-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16. J. Microbiol. Biotechnol. 20: 763-766. 

  22. Lim HS, Cha I, Lee H, Seo MJ. 2016. Optimization of ${\gamma}$ -aminobutyric acid production by Enterococcus faecium JK29 isolated from a traditional fermented foods. Microbiol. Biotechnol. Lett. 44: 26-33. 

  23. Lu X, Xie C, Gu Z. 2009. Optimisation of fermentative parameters for GABA enrichment by Lactococcus lactis. Czech J. Food Sci. 27: 433-442. 

  24. Tajabadi N, Ebrahimpour A, Baradaran A, Rahim RA, Mahyudin NA, Manap MYA, et al. 2015. Optimization of ${\gamma}$ -aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees. Molecules 20: 6654-6669. 

  25. Holdiness MR. 1983. Chromatographic analysis of glutamic acid decarboxylase in biological samples. J. Chromatogr. 277: 1-24. 

  26. Zhang G, Bown AW. 1997. The rapid determination of ${\gamma}$ -aminobutyric acid. Phytochemistry 44: 1007-1009. 

  27. Kim JK, Park SY, Lim SH, Yeo Y, Cho HS, Ha SH. 2013. Comparative metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites. J. Cereal Sci. 57: 14-20. 

  28. Wang JJ, Lee CJ, Pan TM. 2003. Improvement of monacolin K, c-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J. Ind. Microbiol. Biotechnol. 30: 669-676. 

  29. Huang G, Mao J, Ji Z, Fu J, Zou H. 2013. Optimization of culture medium formulation for ${\gamma}$ -aminobutyric acid-producing Lactobacillus plantarum MJ0301. Food Sci. (China) 34: 165-170. 

  30. Park KB, Kim YH, Oh SH. 2009. Optimization of ${\gamma}$ -aminobutyric acid production by fermenting with Lactobacillus sp. OPK. FASEB J. 23: Suppl. 719.7. 

  31. Komatsuzaki N, Shima J, Kawamotoa S, Momosed H, Kimurab T. 2005. Production of ${\gamma}$ -aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 22: 497-504. 

  32. Li H, Qiu T, Huang G, Cao Y. 2010. Production of gammaaminobutyric acid by Lactobacillus brevis NCL912 using fedbatch fermentation. Microb. Cell Fact. 9: 85. 

  33. Yang SY, Lu FX, Lu ZX, Bie XM, Jiao Y, Sun LJ, Yu B. 2008. Production of ${\gamma}$ -aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation. Amino Acids 34: 473-478. 

  34. Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW. 1999. Control of acid resistance in Escherichia coli. J. Bacteriol. 181: 3525-3535. 

  35. Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J. 1998. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol. Microbiol. 27: 299-310. 

  36. Yang H, Xing R, Hu L, Liu S, Li P. 2016. Accumulation of ${\gamma}$ -aminobutyric acid by Enterococcus avium 9184 in scallop solution in a two-stage fermentation strategy. Microb. Biotechnol. 9: 478-485. 

  37. Rastogi NK, Rashmi KR. 1999. Optimisation of enzymatic liquefaction of mango pulp by response surface methodology. Eur. Food Res. Technol. 209: 57-62. 

  38. Yoon CH, Bok HS, Choi DK, Row KH. 2012. Optimization condition of astaxanthin extract from shrimp waste using response surface methodology. Korean Chem. Eng. Res. 50: 545-550. 

  39. Li H, Qiu T, Gao D, Cao Y. 2010. Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino Acids 38: 1439-1445. 

  40. Choi SI, Lee JW, Park SM, Lee MY, Ji GE, Park MS, Heo TR. 2006. Improvement of ${\gamma}$ -aminobutyric acid (GABA) production using cell entrapment of Lactobacillus brevis GABA 057. J. Microbiol. Biotechnol. 16: 562-568. 

  41. Kantachote D, Nunkaew T, Ratanaburee A, Klongdee N. 2016. Production of a meat seasoning powder enriched with ${\gamma}$ -aminobutyric acid (GABA) from mature coconut water using Pediococcus pentosaceus HN8. J. Food Process. Preserv. 40: 733-742. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로