$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수용액으로부터 질산성질소 제거를 위한 기술
Separation Technologies for the Removal of Nitrate-Nitrogen from Aqueous Solution 원문보기

청정기술 = Clean technology, v.23 no.1, 2017년, pp.1 - 14  

서양곤 (경상대학교 화학공학과) ,  정세영 (창녕군개발공사)

초록
AI-Helper 아이콘AI-Helper

높은 농도의 질산염을 포함하는 물은 인간의 건강을 위협하고 부영양화의 원인이 되기 때문에 제한 농도 이하로 처리되어야 한다. 그러나 질산염은 수용액에서의 높은 용해도로 인해 응집, 여과 및 침전과 같은 일반적인 처리공정으로는 제거가 거의 불가능하다. 따라서 흡착, 이온교환, 역삼투, 탈질과 전기투석과 같은 다른 기술이 질산염의 효과적인 제거를 위해 요구된다. 이들 각 기술은 비용, 수질 개선 정도, 잔류물 처리와 전처리 요구와 같은 인자의 비중에 따라 장점과 단점과 가능성을 가지고 있다. 흡착은 가격 효율성, 운전의 용이성과 설계의 간편성으로 가장 보편적으로 사용되는 공정이다. 흡착제의 표면개질은 질산이온 흡착능력을 개선하였다. 역전 전기투석과 역삼투의 질산-선택 멤브레인 공정은 수용액 중의 질산이온 제거에 오랜 동안 많은 지역에서 효과적임이 증명되었다. 두 기술은 높은 농도의 폐기물을 생성하고 이것의 신중한 처분이 필요하다.

Abstract AI-Helper 아이콘AI-Helper

At high nitrate concentrations, water must be treated to meet regulated concentrations because it results in threat to human health and eutrophication of natural water. However, it is almost impossible to remove nitrate by conventional water treatment methods such as coagulation, filtration and prec...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
질산염은 무엇인가? 질산염(nitrate)은 식물 성장에 필요한 주요 영양물질이며, 농작물의 생산성 향상을 위해 질소비료에 널리 사용된다. 그러나 질소비료의 과잉 사용과 고도처리되지 않은 하수와 산업폐수의 방류는 필연적으로 지표수 또는 지하수에서 질산염의 농도를 증가시키고, 이로 인해 심각한 환경 문제를 일으키는 원인이 된다.
녹조 및 적조현상이 미치는 영향은 무엇인가? 즉 질산성 질소(nitrate-nitrogen) 오염물질들은 하천이나 바다로 유입되어 부영양화(eutrophication)를 일으키거나 녹조 및 적조현상의 원인이 된다. 이들은 물고기와 수생 식물을 위협할 뿐만 아니라 수질을 저하시키게 된다[1]. 음용수에 존재하는 고농도의 질산성 질소는 유아기 때 산소전달을 방해하여 청색증(blue-baby syndrome)을 유발하며, 발암물질로 알려진 니트로사민(nitrosamine)이란 화합물을 형성할 수 있는 잠재력을 가지고 있다[2,3].
고농도의 질산성 질소의 악영향에는 무엇이 있는가? 이들은 물고기와 수생 식물을 위협할 뿐만 아니라 수질을 저하시키게 된다[1]. 음용수에 존재하는 고농도의 질산성 질소는 유아기 때 산소전달을 방해하여 청색증(blue-baby syndrome)을 유발하며, 발암물질로 알려진 니트로사민(nitrosamine)이란 화합물을 형성할 수 있는 잠재력을 가지고 있다[2,3]. 이에 따라 미국 환경청(United States Environmental Protection Agency, USEPA)은 음용수의 질산성 질소 농도기준을 10 mg NO3- - N L-1 (질산이온 기준: 44.
질의응답 정보가 도움이 되었나요?

참고문헌 (78)

  1. Cammargo, J. A., and Alonso, A., "Ecological and Toxicological Effects of Inorganic Nitrogen Pollution in Aquatic Ecosystems: A Global Assessment," Environ. Int., 32, 831-849 (2006). 

  2. Fewtrell, L, "Drinking-Water Nitrate, Methemoglobinemia, and Global Burden of Disease: A Discussion," Environ. Health Perspect., 112, 1371-1374 (2004). 

  3. Chiu, H., Tsai, S., and Yang, C., "Nitrate in Drinking Water and Risk of Death from Bladder Cancer: An Ecological Case-Control Study in Taiwan," J. Toxicol. Environ. Health Part A, 70, 1000-1004 (2007). 

  4. http://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants (accessed Dec. 2016). 

  5. http://oneclick.law.go.kr/CSP/CnpClsMain.laf?csmSeq536&ccfNo2&cciNo1&cnpClsNo1 (accessed Dec. 2016). 

  6. WHO, Guidelines for Drinking Water Quality, 4th ed. World Health Organization (2011). 

  7. National Health and Medical Research Council, "Australian Drinking Water Guidelines 6" ver. 3.2, Commonwealth of Australia, Canberra (2016). 

  8. Ministry of Environment, "White Paper of Environment," 57-72 (1997). 

  9. Ministry of Environment, "Fundamental Plan of Water Environmental Management: Fundamental Plan of Water Quality Protection in the Four Major Rivers ('06-'15)," 179-190 (2006). 

  10. Ministry of Environment, "White Paper of Environment," 241-306 (2015). 

  11. Islam, M., Mishra, P. C., and Patel, R., "Physicochemical Characterisation of Hydroxyapatite and Its Application Towards Removal of Nitrate from Water," J. Environ. Manage., 91, 1883-1891 (2010). 

  12. Carroll, S. B., and Salt, S. D., Ecology for Gardeners, Timber Press, Portland, USA (2004). 

  13. Nam, Y. H., An, S. W., and Park, J. W., "Nitrogen Budget of South Korea in 2008: Evaluation of Non-point Source Pollution and $N_2O$ Emission," J. Korean Soc. Environ. Eng., 33(2), 103-112 (2011). 

  14. Nam, Y. H., An, S. W., Jung, M. S., and Park, J. W., "Nitrogen Budget of Agriculture and Livestock in South Korea 2010," J. Korean Soc. Environ. Eng., 34(3), 204-213 (2012). 

  15. Shin, J. H., Yoo, C. W., An, S. W., and Park, J. W., "2011 Nitrogen Budget of South Korea Including Nitrogen Oxides in Gas Phase," J. Korean Soc. Environ. Eng., 36(2), 75-83 (2014). 

  16. Kapoor, A., and Viraraghavan, T., "Nitrate Removal from Drinking Water-Review," J. Environ. Eng., 123, 371-380 (1977). 

  17. Bhatnagar, A., and Sillanpaa, M., "A Review of Emerging Adsorbents for Nitrates Removal from Water," Chem. Eng. J., 168, 493-504 (2011). 

  18. Choi, K. O., Seo, S. J., and Ko, S., "Nitrate Reduction Technologies for Safe Groundwater Drinking," Food Eng. Prog., 18(1), 36-41 (2014). 

  19. Moreno-Castilla, C., "Adsorption of Organic Molecules from Aqueous Solutions on Carbon Materials," Carbon, 42, 83-94 (2004). 

  20. Yang, R. T., "Adsorbents Fundamentals and Applications," John Wiley and Sons, New Jersey, USA (2003). 

  21. Bhatnagar, A., Ji, M., Choi, Y. H., Jung, W., Lee, S. H., Kim, S. J., Lee, G., Suk, H., Kim, H. S., Min, B., Kim, S. H., Jeon, B. H., and Kang, J. W., "Removal of Nitrate from Water by Adsorption onto Zinc Chloride Treated Activated Carbon," Sep. Sci. Technol., 43(4), 886-907 (2008). 

  22. Loganathan, P., Vigneswaran, S., and Kandasamy, J., "Enhanced Removal of Nitrate from Water Using Surface Modification of Adsorbents-Review," J. Environ. Manag., 131, 363-374 (2013). 

  23. Mizuta, A., Matsumoto, T., Hatata, Y., Nishihara, K., and Nakanishi, T., "Removal of Nitrate-Nitrogen from Drinking Water using Bamboo Powder Charcoal," Bioresour. Technol., 95, 255-257 (2004). 

  24. Mishra, P. C., and Patel, R. K., "Use of Agricultural Waste for the Removal of Nitrate-Nitrogen from Aqueous Medium," J. Environ. Manag., 90, 519-522 (2009). 

  25. Demiral H., and Gunduzoglu, G., "Removal of Nitrate from Aqueous Solutions by Activated Carbon Prepared from Sugar Beet Bagasse," Bioresour. Technol., 101, 1675-1680 (2010). 

  26. Ohe, K., Nagae, Y., Nakamura, S., and Baba, Y., "Removal of Nitrate Anion by Carbonaceous Materials Prepared from Bamboo and Coconut Shell," J. Chem. Eng. Japan, 36, 511-515 (2003). 

  27. Afkhami, A., Madrakian, T., and Karimi, Z., "The Effect of Acid Treatment of Carbon Cloth on the Adsorption of Nitrite and Nitrate Ions," J. Hazard. Mater., 144, 427-431 (2007). 

  28. Khan, M. A., Ahn, Y. T., Kumar, M., Lee, W., Min, B., Kim, G., Cho, D. W., Park, W. B., and Jeon, B. H., "Adsorption Studies for the Removal of Nitrate Using Modified Lignite Granular Activated Carbon," Sep. Sci. Technol., 46, 2575-2584 (2011). 

  29. Tofighy, M. A., and Mohammadi, T., "Nitrate Removal from Water Using Functionalized Carbon Nanotube Sheets," Chem. Eng. Res. Des., 90, 1815-1822 (2012). 

  30. Chatterjee, and Woo, S. H., "The Removal of Nitrate from Aqueous Solutions by Chitosan Hydrogel Beads," J. Hazard. Mater., 164, 1012-1018 (2009). 

  31. Chatterjee, S., Lee, D. S., Lee M. W., and Woo S. H., "Nitrate Removal from Aqueous Solutions by Cross-linked Chitosan Beads Conditioned with Sodium Bisufate," J. Hazard. Mater., 166, 508-513 (2009). 

  32. Cengeloglu, Y., Tor, A., Ersoz, M., and Arslan, G., "Removal of Nitrate from Aqueous Solution by Using Red Mud," Sep. Purif. Technol., 51, 374-378 (2006). 

  33. Ozturk, N., and Bekta, T. E., "Nitrate Removal from Aqueous Solution by Adsorption onto Various Materials," J. Hazard. Mater., B112, 155-162 (2004). 

  34. Ozcan, A., Sahin, M., and Ozcan, A. S., "Adsorption of Nitrate Ions onto Sepiolite and Surfactant-Modified Sepiolite," Adsor. Sci. Technol., 23, 323-333 (2005). 

  35. Hamoudi, S., Saad, R., and Belkacemi, K., "Adsorptive Removal of Phosphate and Nitrate Anions from Aqueous Solutions Using Ammonium-Functionalized Mesoporous Silica," Ind. Eng. Chem. Res., 46, 8806-8812 (2007). 

  36. Arora, M., Eddy, N. K., Mumford, K. A., Baba, Y., Perera, J. M., and Stevens, G. W., "Surface Modification of Natural Zeolite by Chitosan and Its Use for Nitrate Removal in Cold Regions," Cold Reg. Sci. Technol., 62, 92-97 (2010). 

  37. Onyango, M., Masukume, M., Ochieng, A., and Otieno, F., "Functionalised Natural Zeolite and Its Potential for Treating Drinking Water Containing Excess Amount of Nitrate," Water SA, 36, 655-662 (2010). 

  38. Xi, Y., Mallavarapu, M., and Naidu, R., "Preparation, Characterization of Surfactants Modified Clay Minerals and Nitrate Adsorption," Appl. Clay Sci., 48, 92-96 (2010). 

  39. Selium, M. K., Komarnemi, S., Byrne, T., Cannon, F. S., Shahien M. G., Khalil, A. A., and Abd El-Gaid, I. M., "Removal of Nitrate by Synthesis Organosilicaa and Organoclay: Kinetic and Isotherm Studies," Sep. Purif. Technol., 110, 181-187 (2013). 

  40. Aghaii, M. D., Pakizeh, M., and Ahmadpour, A., "Synthesis and Characterization of Modified UZM-5 as Adsorbent for Nitrate Removal from Aqueous Solution," Sep. Purif. Technol., 113, 24-32 (2013). 

  41. Bhardwaj, D., Sharma, M., Sharma, P., and Tomar, R., "Synthesis and Surfactant Modification of Clinoptilolite and Montmorillonite for the Removal Nitrate and Preparation of Slow Release Nitrogen Fertilizer," J. Hazard. Mater., 227-228, 292-300 (2012). 

  42. Yin, C. Y., Aroua, M. K., and Daud, W. M. A. W., "Review of Modifications of Activated Carbon for Enhancing Contaminant Uptakes from Aqueous Solutions," Sep. Purif. Technol., 52(3), 403-415 (2007). 

  43. Wang, S., Ang, H. M., and Tade, M. O., "Novel Applications of Red Mud as Coagulant, Adsorbent and Catalyst for Environmentally Benign Processes," Chemosphere, 72, 1621-1635 (2008). 

  44. Le Cloirec, P., "Adsorption onto Activated Carbon Fiber Cloth and Electrothermal Desorption of Volatile Organic Compounds (VOCs): A Specific Review," Chin. J. Chem. Eng., 20(3), 461-468 (2012). 

  45. Rengel-Mendez, J. R., and Streat, M., "Adsorption of Cadmiun by Activated Carbon Cloth: Influence of Surface Oxidation and Solution pH," Water Res., 36, 1244-1252 (2002). 

  46. Loganathan, P., Vigneswaran, S., Kandasamy, J., and Naidu, R., "Cadmium Sorption and Desorption in Soils: A Review," Crit. Rev. Environ. Sci. Technol., 42, 489-533 (2012). 

  47. Namasivayam, C., and Sangeetha, D., "Removal of Nitrate from Water by $ZnCl_2$ Activated Carbon from Coconut Coir Pith, an Agricultural Soil Waste," Indian J. Chem. Technol., 12, 513-521 (2005). 

  48. Namasivayam, C., and Sangeetha, D., "Application of Coconut Coir Pith for the Removal of Sulphate and Other Anions from Water," Desalination, 219, 1-13 (2008). 

  49. Hassan, M. L., Kassem, N. F., and El-Kader, A. H. A., "Novel Zr(IV) Sugar Beet Pulp Composite for Removal of Sulphate and Nitrate Anions," J. Appl. Polym. Sci., 117, 2205-2212 (2010). 

  50. Zhang, M., Gao, B., Yao, Y., Xue, Y., and Inyang, M., "Synthesis of Porous MgO-Biochar Nanocomposites for Removal of Phosphate and Nitrate from Aqueous Solutions," Chem. Eng. J., 210, 26-32 (2012). 

  51. Kookana, R. S., Samah, A. K., van Zweeten, L., Knull, E., and Singh, B., "Biochar Application to Soil: Agronomic and Environmental Benefits and Unintended Consequences," Adv. Agron., 112, 103-143 (2011). 

  52. Orlando, U. S., Baes, A. U., Nishijima, W., and Okada, M., "A New Procedure Lignocellulosic Anion Exchangers from Agricultural Waste Materials," Biosour. Technol., 83, 195-198 (2002). 

  53. Orlando, U. S., Baes, A. U., Nishijima, W., and Okada, M., "Preparation of Agricultural Residue Anion Exchangers and Its Nitrate Maximum Adsorption Capacity," Chemosphere, 48, 1041-1046 (2002). 

  54. Katal, R., Baei, M. S., Rahmati, H. T., and Esfandian, H., "Kinetic Isotherm and Thermodynamic Study of Nitrate Adsorption from Aqueous Solution Using Modified Rice Husk," J. Ind. Eng. Chem., 18, 295-302 (2012). 

  55. Bowman, R. S., "Applications of Surfactant-Modified Zeolites to Environmental Remediation," Microporous Mesoporous Mater., 61, 43-56 (2006). 

  56. Haggerty, G. M., and Bownam, R. S., "Sorption of Chromate and Other Inorganic Anions by Organo-Zeolite," Environ. Sci. Technol., 28, 452-458 (1994). 

  57. Masukume, C., Eskangarpour, A., Onyango, M. S., Ochieng, A., and Otieno, F., "Treating High Nitrate Groundwater Using Surfactant Modified Zeolite in Fixed Bed Column," Sep. Sci. Technol., 46, 1131-1137 (2011). 

  58. Islam, M., and Patel, R., "Physicochemical Characterization and Adsorption Behaviour of Ca/Al Chloride Hydrotalcite-Like Compound Towards Removal of Nitrate," J. Hazard. Mater., 190, 120-128 (2011). 

  59. Socias-Viciana, M. M., Urena-Amate, M. D., Gonzalez-Pradas, E., Garcia-Cortes, M. J., and Lopez-Teruel, C., "Nitrate Removal by Calcined Hydrotacite-Type Compounds," Clays Clay Min., 56, 2-9 (2008). 

  60. Helfferich, F. G., Ion Exchange, Dover Publications, New York, USA (1995). 

  61. Liang, S., Mann, M. A., Guter, G. A., Kim, P. H., and Hardan, D. L., "Nitrate Removal from Contaminated Groundwater," J. Am. Water Works Ass., 91(2), 79-91 (1999). 

  62. Darbi, A., Viraraghavan, T., Butler, R., and Corkal, D., "Pilot-Scale Evaluation of Select Nitrate Removal Technologies," J. Environ. Sci. Health, A38(9), 1703-1715 (2003). 

  63. Samatya, S., Kabay, N., Yuksel, U., Arda, M., and Yuksel, M., "Removal of Nitrate from Aqueous Solutions by Nitrate Selective Ion Exchange Resins," React. Funct. Polym., 66 (11), 1206-1214 (2006). 

  64. Buelow, R. W., Jropp, K. L., Withered, J., and Symons, J. M., "Nitrate Removal by Anion-Exchange Resins," J. Am. Water Works Ass., 67(9), 528-534 (1975). 

  65. Dore, M., Simon, P. H., Deguin, A., and Victot, J., "Removal of Nitrate in Drinking Water by Ion-Exchange-Impact on the Chemical Quality of Treated Water," Water Res., 20(2), 221-232 (1986). 

  66. Kim, J., and Benjamin, M. M., "Modeling a Novel Ion Exchange Process for Arsenic and Nitrate Removal," Water Res, 38(8), 2053-2062 (2004). 

  67. Bergman, R., Reverse Osmosis and Nanofiltartion, American Water Works Association, Denver, USA (2007). 

  68. Symons, J. M., Bradley, L. C., and Cleveland, T. C., The Drinking Water Dictionary, American Water Works Association, McGraw-Hill, New York, USA (2001). 

  69. Elyanow, D., and Presechino, J., "Advanced in Nitrate Removal," GE Water and Process Technologies, Report No. TP-1033EN 0601 (2005). 

  70. Soares, M. I. M., "Biological Denitrification of Groudwater," Water Air Soil Pollut., 123, 183-193 (2000). 

  71. Shrimali, M., and Singh, K. P., "New Methods of Nitrate Removal from Water," Environ. Pollut., 112(3), 351-359 (2001). 

  72. Hiscook, K. M., Lloyd, J. M., and Lerner, D. N., "Review of Natural and Artificial Denitrification of Groudwater," Water Res., 25(9) 1099-1111 (1991). 

  73. Haugen, K. S., Semmens, M. J., and Novak, P. J., "A Novel in situ Technology for the Treatment of Nitrate Contaminated Groundwater," Water Res., 36(14), 3497-3506 (2002). 

  74. Luk, G. K., and Au-Yeung, W. C., "Experimental Investigation on the Chemical Reduction of Nitrate from Groundwater," Adv. Environ. Res., 6(4), 441-453 (2002). 

  75. Cheng, I. F., Muftikian, R., Fernando, Q., and Korte, N., "Reduction of Nitrate to Ammonia by Zero-Valent Iron," Chemosphere, 35(11), 2689-2695 (1997). 

  76. Kumar, M., and Chakraborty, S., "Chemical Denitrification of Water by Zero-Valent Magnesium Powder," J. Hazard. Mater., 135, 112-121 (2006). 

  77. Rautenbach, R., Kopp, W., Opbergen, G., and Hellekes, R., "Nitrate Reduction of Well Water by Reverse Osmosis and Electrodialysis-Studies on Plant Performance and Costs," Desalination, 65, 241-258 (1987). 

  78. Eyal, A., and Kedem, O., "Nitrate-Selective Anion-Exchange Membranes," Desalination, 38, 101-111 (1988). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로