$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

논문 상세정보

선박의 파랑 중 운항성능을 고려한 초기 선형설계에 대한 연구

Study on Ship Performance in a Seaway for Application to Early Stage of Hull-Form Design

Abstract

This paper introduces a study on ship performance in waves to consider the effects of added resistance in the early stage of hull-form design. A ship experiences a loss of speed in actual seaways, hence this study proposes the overall procedure of a new design concept that takes into account the hydrodynamic performance of ship in waves. In the procedure, the added resistance is predicted using numerical methods: slender-body theory and Maruo's far-field formulation, since these methods are efficient in initial design stage, and an empirical formula is adopted for short waves. As computational models, KVLCC2 hull and Supramax bulk carrier are considered, and the results of added resistance and weather factor for test models are discussed. The computational results of vertical motion response and added resistance of KVLCC2 hull are compared with the experimental data. In addition, the sensitivity analysis of added resistance and weather factor for KVLCC2 hull to the variations of ship dimensions are conducted, and the change of the added resistance and propulsion factors after hull form variations are discussed.

질의응답 

키워드에 따른 질의응답 제공
핵심어 질문 논문에서 추출한 답변
이상 유동(ideal flow)에 근거한 포텐셜 기반 수치 기법
이상 유동(ideal flow)에 근거한 포텐셜 기반 수치 기법은 어떻게 구분되는가?
크게 모멘텀 보존방법과 압력직접 적분방법으로 나뉠 수 있다

파랑 중 부가저항의 계산은 이상 유동(ideal flow)에 근거한 포텐셜 기반 수치 기법들을 활용한 연구가 많이 진행되어 왔고 이는 크게 모멘텀 보존방법과 압력직접 적분방법으로 나뉠 수 있다. 모멘텀 보존방법은 Maruo (1960)에 의해 제안되었고, 다른 방법들에 비해 상대적으로 간단하게 계산 할 수 있어서 그동안 많이 활용되어 왔다.

파랑 중 부가저항
파랑 중 부가저항의 한계점은 무엇인가?
최근 선박이 대형화됨에 따라서 일반적인 해상상태에서의 배 길이에 비해 상대적으로 파장이 짧은 영역으로 집중되는데, 단파장 영역에서의 부가저항은 기존의 수치해석 기법으로는 정확하게 계산하는 데에 한계

이러한 파랑 중 부가저항 문제에서 어려운 부분은 단파장 영역에서의 부가저항 해석이다. 최근 선박이 대형화됨에 따라서 일반적인 해상상태에서의 배 길이에 비해 상대적으로 파장이 짧은 영역으로 집중되는데, 단파장 영역에서의 부가저항은 기존의 수치해석 기법으로는 정확하게 계산하는 데에 한계가 있다. 이러한 문제를 보완하기 위해서 Fujii and Takahashi (1975)는 실험을 통한 보정계수를 도입하여 수직 원기둥에 가해지는 표류력에 대한 식을 선박에 적용할 수 있도록 수정하였다.

ITTC
ITTC가 제시한 선박 운항효율 해석 절차는?
불규칙파 중에서의 소비 마력 증가를 규칙파 중에서의 모형시험 자료를 사용하여 실험적으로 예측하기 위한 절차 (ITTC, 2011)를 제시

최근에는 선박의 운항효율에 대한 해석 절차가 여러 국제기구에 의해 제시되고 있다. ITTC(International Towing Tank Conference)는 불규칙파 중에서의 소비 마력 증가를 규칙파 중에서의 모형시험 자료를 사용하여 실험적으로 예측하기 위한 절차 (ITTC, 2011)를 제시한바 있다. 그리고 IMO 산하의 해양환경보호위원회(Marine Environment Protection Committee, MEPC)는 기상보정계수를 추정하기 위한 가이드라인 (IMO, 2012)을 제시하였고, 국제표준화기구(International Organization for Standardization, ISO)는 선박의 시운전 결과를 사용하여 선박의 속도 저감을 평가하는 가이드라인 (ISO, 2015)을 제시하였다.

질의응답 정보가 도움이 되었나요?

저자의 다른 논문

참고문헌 (36)

  1. 1. Choi, Y.R. Hong, S.Y. & Choi, H.S., 2000. An analysis of second-order wave forces on floading bodies by using a higher-order boundary element method. Ocean Engineering, 28, pp.117-138. 
  2. 2. Chuang, Z. & Steen, S. 2013. Speed loss of a vessel sailing in oblique waves. Ocean Engineering, 64, pp.88-99. 
  3. 3. Faltinsen, O.M. Minsaas, K.J. Liapis, N. & Skjordal, S.O., 1980. Prediction of resistance and propulsion of a ship in a seaway. 13th Symposium on Naval Hydrodynamics, Tokyo, Japan, 6-10 October 1980. 
  4. 4. Feng, P.Y. Ma, N. & Gu, X.C., 2010. Long-term prediction of speed reduction due to waves and fuel consumption of a ship at actual seas. 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 6-11 June 2010. 
  5. 5. Fujii, H. & Takahashi, T., 1975. Experimental study on the resistance increase of a ship in regular oblique waves. 14th International Towing Tank Conference, Ottawa, Canada, September 1975, pp.351-360. 
  6. 6. Fujiwara, T. Ueno, M. & Ikeda, Y., 2006. Cruising performance of a large passenger ship in heavy sea. 16th International Offshore and Polar Engineering Conference, San Francisco, California, USA, 28 May - 2 June 2006. 
  7. 7. Gerritsma, J. & Beukelman, W., 1972. Analysis of the resistance increase in waves of a fast cargo ship. International Shipbuilding Progress, 19(217), pp. 285-293. 
  8. 8. Grigoropoulos, G.J., 2004. Hull form optimization for hydrodynamic performance. Marine Technology, 41(4), pp.167-182. 
  9. 9. Holtrop, J. & Mennen, G.G.J., 1982. An approximate power prediction method. International Shipbuilding Progress, 29, pp.166-170. 
  10. 10. IMO, 2012. Interim guidelines for the calculation of the coefficient fw for decrease in ship speed in a representative sea condition for trial use. IMO MEPC.1/Circ.769. 
  11. 11. ISO, 2015. Ships and marine technology - guidelines for the assessment of sSpeed and power performance by analysis of speed trial data. ISO 15016: 2015. 
  12. 12. ITTC, 2011. Prediction of power increase in irregular waves from model test. ITTC - Recommended Procedure 7.5-02-07-02.2. 
  13. 13. Joncquez, S.A.G., 2009. Second-order forces and moments acting on ships in waves. Ph.D Thesis. Technical University of Denmark. 
  14. 14. Journee, J.M.J., 1992. Experiments and calculations on 4 wigley hull forms in head waves. Delft: Delft University of Technology Technical Report No 0909. 
  15. 15. Kashiwagi, M. Takehiro, I. & Takuma, S., 2010. Effect of forward speed of a ship on added resistance in waves. Journal of Offshore and Polar Engineering, 20(3), pp.196-203. 
  16. 16. Kuroda, M. Tsujimoto, M. Fujiwara, T. Ohmatsu, S. & Takagi, K. 2008. Investigation on components of added resistance in short waves. Journal of the Japan Society of Naval Architects and Ocean Engineering, 8, pp.171-176. 
  17. 17. Kim, H. Hong, C. Lee, G. & Kim, B., 2015. Prediction of added resistance of a ship in waves using computational fluid dynamics. Annual Autumn Meeting, Jeju, Korea, 21-23 May 2015. 
  18. 18. Kim, K.H. & Kim, Y., 2010. Numerical analysis of added resistance on ships by a time-domain rankine panel method. Journal of the Society of Naval Architects of Korea, 47(3), pp.398-409. 
  19. 19. Kim, K.H. & Kim, Y., 2011. Numerical study on added resistance on ships by using a time-domain rankine panel method. Ocean Engineering, 38, pp.1357-1367. 
  20. 20. Korea Institute of Ocean Science and Technology (KIOST), 2013. Development of the key technology for a ship drag reduction and propulsion efficiency omprovement. Korea: KIOST. 
  21. 21. Manen, J.D.van & Oossanen, P.van, ed. E.V. Lewis, 1988. Principles of naval architecture. Society of Naval Architects and Marine Engineers: New Jersey. 
  22. 22. Maruo, H., 1960. The drift of a body floating on waves. Journal of Ship Research, 4(3), pp.1-10. 
  23. 23. Newman, J.N., 1967. The drift force and moment on ships in waves. Journal of Ship Research, 11, pp.51-60. 
  24. 24. Newman, J.N., 1985. The evaluation of free-surface green function. 4th international conference on Numerical Ship Hydrodynamics, Washington D.C., USA, 24-27 September 1985. 
  25. 25. Park, D.M. Lee, J. & Kim, Y., 2015. Uncertainty analysis for added resistance experiment of KVLCC2 ship. Ocean Engineering, 95, pp.143-156. 
  26. 26. Park, D.M. Kim, Y. Seo, M.G. & Lee, J., 2016. Study on added resistance of a tanker in head waves at different drafts. Ocean Engineering, 111, pp.569-581. 
  27. 27. Prpic-Orsic, J. & Faltinsen, O.M., 2012. Estimation of ship speed loss and associated CO2 emissions in a seaway. Ocean Engineering, 44, pp.1-10. 
  28. 28. Salvesen, N. Tuck, E.O. & Faltinsen, O.M., 1970. Ship motions and sea loads. Transactions of Society of Naval Architects and Marine Engineers, 78, pp.250-279. 
  29. 29. Salvesen, N., 1978. Added resistance of ship in waves. Journal of Hydronautics, 12(1), pp.24-34. 
  30. 30. Sclavounos, P.D., 1985. User's manual of NIIRID, MIT Report. Cambridge: MIT. 
  31. 31. Seo, M.G. Park, D.M. Yang, K.K. & Kim, Y., 2013. Comparative study on computation of ship added resistance in waves. Ocean Engineering, 73(5), pp 1-15. 
  32. 32. Tasrief, M. & Kashiwagi, M., 2014. Improvement of ship performance based on sensitivity study to the added resistance. 24th International Ocean and Polar Engineering Conference, Busan, Korea, 15-20 June 2014. 
  33. 33. Tsujimoto, M. Shibata, K. Kuroda, M. & Takagi, K., 2008. A practical correction method for added resistance in waves. Journal of the Japan Society of Naval Architects and Ocean Engineers, 8, pp.141-146. 
  34. 34. Van, S.H. Kim, W.J. Yim, G.T. Kim, D.H. & Lee, C.J., 1998. Experimental investigation of the flow characteristics around practical hull forms. 3rd Osaka Colloquium on Advanced CFD Applications to Ship Flow and Hull Form Design, Osaka, Japan, 25-27 May, 1988. 
  35. 35. Yang, K.K. Seo, M.G. & Kim, Y., 2015. Analysis of added resistance in short waves. Journal of the Society of Naval Architects of Korea, 52(4), pp.338-348. 
  36. 36. Zalek, S.F. Parsons, M.G. & Beck, R.F., 2009. Naval hull form multicriterion hydrodynamic optimization for the conceptual design phase. Journal of Ship Research, 53(4), pp.199-213. 

문의하기 

궁금한 사항이나 기타 의견이 있으시면 남겨주세요.

Q&A 등록

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

DOI 인용 스타일

"" 핵심어 질의응답