$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

야외 지질학 탐구 요소 추출 및 지질 답사 교육 문헌 분석
Drawing Elements of Inquiry in Field Geology and Analyzing Field Geology Education in Previous Studies 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.37 no.3, 2017년, pp.465 - 481  

정찬미 (이화여자대학교) ,  신동희 (이화여자대학교)

초록
AI-Helper 아이콘AI-Helper

본 연구는 최근 20년간 국내외에서 수행된 야외 지질 답사 교육이 지질학 참 탐구의 특성을 어떻게 반영하고 있는지 분석한 문헌 분석 연구다. 이를 위해 먼저 야외 지질학자의 실제 연구 방법 및 과학 교육학적 중요성을 고려하여 야외 지질학 탐구 요소 다섯 가지(관찰, 표상, 귀추적 추론, 공간적 사고, 통시적 사고)를 도출하고, 이를 바탕으로 탐구 하위 요소를 추가하여 지질 답사 교육 분석 기준을 개발했다. 분석 대상 사례는 총 53건이었고, 분석은 야외 지질학 탐구 요소별 하위 요소 및 탐구 요소 전반이 나타나는 경향에 대해 수행되었다. 분석 결과, 관찰과 표상은 대부분의 사례에 포함되어 있었으며, 귀추적 추론, 공간적 사고, 통시적 사고 순으로 포함된 빈도수가 적었다. 관찰은 목적적 관찰 및 자유 관찰의 비율이 높았고, 표상에서는 시각화 언어화 유형과 자유 양식의 표상이 많이 나타났으며, 귀추적 추론에서는 가설 생성 단계가 포함되는 경우가 많고 가설 내용은 지질형성 과정과 관련된 경우가 많았다. 공간적 사고에서는 자기 위치화 및 공간 배치 형태 인식 유형이 높은 비율로 나타나고, 통시적 사고에서는 층서 유형의 사고가 가장 많이 나타났다. 3가지 이상의 야외 지질학 탐구 요소를 포함하는 경우는 전체 사례의 87%였다. 이 연구의 결과를 바탕으로 향후 참 과학 탐구로서 야외 지질 답사 교육의 활용과 관련한 시사점을 제시했다.

Abstract AI-Helper 아이콘AI-Helper

This study is a research synthesis analyzing how field geology education is conducted in domestic and foreign countries in the recent 20 years and how it reflects the characteristics of authentic geologic inquiry. For these purposes, we first drew five elements of inquiry in field geology (observati...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
지질학 탐구의 목적은 무엇인가? 그러나 전통 지질학의 탐구 대상인 지질 현상은 시공간 규모가 매우 거대하고 현상의 원인이 복합적이므로 실내에서 통제된 실험으로 재현되기 어렵다(Kim, 2002). 지질학 탐구의 목적은 지구가 현재의 모습을 가지기까지 발생한 사건을 순차적으로 밝혀내거나 지구에서 일어나는 현상의 원인을 밝히는 것이다(Laudan, 1987). 따라서 지질학자들은 야외에서의 직⋅간접적 관찰과 측정을 바탕으로 지질학적 사건 및 원인을 추론하는 형태의 탐구를 진행한다(Ault, 1998; Lee & Kwon, 2010).
실험은 어떤 탐구 형태인가? 대표적 과학 탐구 방법으로 실험(experimentation)이 있다. 실험은 잘 통제된 실험실 환경에서 변수 간 관계를 검증하기 위해 자연을 조작하는 탐구 형태를 말한다. 그러나 전통 지질학의 탐구 대상인 지질 현상은 시공간 규모가 매우 거대하고 현상의 원인이 복합적이므로 실내에서 통제된 실험으로 재현되기 어렵다(Kim, 2002).
야외 지질학 탐구의 중요 요소로 도출된 다섯 요소는 무엇인가? 연구자 1인이 야외 지질학 탐구 요소를 예비 도출한 후, 2인의 지구과학 교육 연구자가 내용의 타당성을 검토하여 최종 요소를 선정했다. 최종 도출된 야외 지질학 탐구 요소는 관찰, 표상, 귀추적 추론, 공간적 사고 및 통시적 사고였으며, 이들 요소선정에서 고려했던 대표 문헌은 Petcovic, Libarkin, & Baker(2009), Mogk & Goodwin(2012), Engelhardt & Zimmermann(1988), Kali & Orion(1996), Dodick & Orion(2003a) 등이다.
질의응답 정보가 도움이 되었나요?

참고문헌 (76)

  1. Ainsworth, S. (1999). The Functions of Multiple Representations. Computers, & Education, 33(2), 131-152. 

  2. Ault, C. R. (1998). Criteria of Excellence for Geological Inquiry: The Necessity of Ambiguity. Journal of Research in Science Teaching, 35(2), 189-212. 

  3. Bae, H., & Chung, G. (2008). A Comparative Analysis on Inquiry Activities in Geology of High School Earth Science Textbooks of Korea and the U. S. Journal of the Korean Earth Science Society, 29(7), 626-639. 

  4. Bamberger, J. (2014). The Laboratory for Making Things: Developing Multiple Representations of Knowledge. In Eilam, B. and Gilbert, J. K. (Eds.), Science Teachers' Use of Visual Representations (pp. 291-311). Cham: Springer International Publishing. 

  5. Bannan, B., Peters, E., & Martinez, P. (2010). Mobile, Inquiry-based Learning and Geological Observation: An Exploratory Study. International Journal of Mobile and Blended Learning, 2(3), 13-29. 

  6. Behrendt, M., & Franklin, T. (2014). A Review of Research on School Field Trips and Their Value in Education. International Journal of Environmental and Science Education, 9(3), 235-245. 

  7. Bentley, M. L., Ebert, C., & Ebert, E. S. (2000). The Natural Investigator: A Constructivist Approach to Teaching Elementary and Middle School Science. Belmont, CA: Wadsworth Publishing Company. 

  8. Chamberlin, T. C. (1965). The method of multiple working hypotheses. Science, 148, 754-759. Originally published in Science in 1890. 

  9. Cheong, C., Kim, J., & Lee, Y. (2011). 지질학 [Geology]. Seoul: Parkyoungsa. 

  10. Chiappetta, E. L., & Koballa, T. R. (2014). Science Instruction in the Middle and Secondary Schools (7th ed.). Boston: Pearson Allyn, & Bacon. 

  11. Cho, H., Jeong, S., & Yang, I. (2008). The Development of the Analytic Coding Frames on the Abductive Reasoning in Scientific Inquiry. Journal of the Korean Earth Science Society, 29(7), 586-601. 

  12. Cho, H., Kim, H., Yoon, H., & Lee, K. (2011). 과학 교육의 이론과 실제 [Theory and Practice of Science Education] (4th). Seoul: Kyouyookgwahagsa. 

  13. Choi, J. (2013). Middle and High School Students’ Self-location Ability in Map Reading for Wayfinding. Journal of Geographic and Environmental Education, 21(1), 65-77. 

  14. Dodick, J., & Orion, N. (2003a). Cognitive Factors Affecting Student Understanding of Geologic Time. Journal of Research in Science Teaching, 40(4), 415-442. 

  15. Dodick, J., & Orion, N. (2003b). Measuring Student Understanding of Geological Time. Science Education, 87(5), 708-731. 

  16. Engelhardt, W., & Zimmermann, J. (1988). Theory of Earth Science. Cambridge, UK: Cambridge University Press; English version. 

  17. Esteves, H., Ferreira, P., Vasconcelos, C., & Fernandes, I. (2013). Geological Fieldwork: A Study Carried Out With Portuguese Secondary School Students. Journal of Geoscience Education, 61(3), 318-325. 

  18. Frodeman, R. (1995). Geological reasoning: Geology as an interpretive and historical science. Geological Society of America Bulletin, 107(8), 960-968. 

  19. Gaigher, E., Lederman, N., & Lederman, J. (2014). Knowledge about Inquiry: A study in South African high schools. International Journal of Science Education, 36(18), 3125-3147. 

  20. Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning Models in Science Education and in Design and Technology. In J. K. Gilbert, & C. J. Boulter (Eds.), Developing Models in Science Education (pp. 3-17). Dordrecht, Netherlands: Kluwer Academic Publishers. 

  21. Granshaw, F. D. (2011). Designing and Using Virtual Field Environments to Enhance and Extend Field Experience in Professional Development Programs in Geology for K-12 Teachers (Doctoral dissertation). Available from ProQuest Dissertations and Theses database. (DAI No. 3458471) 

  22. Gray, R. (2014). The Distinction between Experimental and Historical Sciences as a Framework for Improving Classroom Inquiry. Science Education, 98(2), 327-341. 

  23. Gray, R., & Kang, N. (2014). The Structure of Scientific Arguments by Secondary Science Teachers: Comparison of experimental and historical science topics. International Journal of Science Education, 36(1), 46-65. 

  24. Hand, B., Choi, A., Greenbowe, T., Schroeder, J., & Bennett, W. (2008). Examining the Impact of Student Use of Multiple-mode Representations in Constructing Science Arguments. In Annual International Conference of National Association for Research in Science Teaching, Baltimore, MD. 

  25. Jeong, J., Won, H., & Kwon, Y. (2005). Application of the Triple Abduction Model for Improving the Skills of Scientific Hypothesis Generation. Journal of the Korean Association for Science Education, 25(5), 595-602. 

  26. Jeong, S., Choi, H., & Yang, I. (2011). An Analysis of Abductive Reasoning on the Inquiry of Scientists and Elementary School Gifted Children in Science. Journal of the Korean Association for Science Education, 31(6), 901-919. 

  27. Jun, Y., Kwon, H., Choi, B., Park, J., & Kim, C. (2007). Perceptions and Practices of Teachers in an Earth Science Teachers’ Research Group About Teaching Geologic Field Trip: A Case Study. Journal of the Korean Earth Science Society, 28(6), 686-698. 

  28. Kali, Y., & Orion, N. (1996). Spatial Abilities of High-school Students in the Perception of Geologic Structures. Journal of Research in Science Teaching, 33(4), 369-391. 

  29. Kang, S., & Noh, T. (2014). 과학의 본성 [Nature of science]. Seoul: Bookshill. 

  30. Kim, C. (2002). Inferences frequently used in earth science. Journal of the Korean Earth Science Society, 23(2), 188-193. 

  31. Kim, C. (2003). Preparing Teachers for Systems Science Methodology. In V. J. Mayer (Ed.), Implementing Global Science Literacy, (pp. 255-266). Columbus, OH: The Ohio State University. 

  32. Kim, C., Park, I., An, H., Oh, P., Kim, D., & Park, Y. (2005). Development of an Inquiry Analysis Framework Based on the Features of Earth Science Inquiry Methodology and the Analysis of Inquiry Activities in the 8th Grade "Earth History and Diastrophism" Unit. Journal of the Korean Earth Science Society, 26(8), 751-758. 

  33. Kim, J., Kim, M., & Park, Y. (2005). Analysis of Inquiry Tasks in Earth Unit of the 10th Grade Science Textbooks. Journal of the Korean Earth Science Society, 26(6), 501-510. 

  34. Kim, K., & Kim, J. (2006). High School Science Teachers' Understanding of the Contents Related to the Geologic Time in the Secondary School Science Textbooks and the Guidebooks for Teachers. Journal of the Korean Earth Science Society, 27(1), 32-48. 

  35. Kim, N., & Yoo, P. (2012). The Effect of Hypothesis Formulation using Abduction on Science Processing Skills and Creative Thinking Activities. Journal of the Korean Society of Earth Science Education, 5(1), 60-67. 

  36. Kwon, Y., Jeong, J., Kang, M., & Park, Y. (2005). Patterns of Scientific Observation in Elementary and Secondary Science Teachers' Observing Biological Phenomena. Journal of the Korean Association for Science Education, 25(3), 431-439. 

  37. Kwon, Y., Shim, H., Jeong, J., & Park, J. (2003). Role and Process of Abduction in Elementary School Students' Generation of Hypotheses concerning Vapor Condensation. Journal of the Korean Earth Science Society, 24(4), 250-257. 

  38. Laudan, R. (1987). From mineralogy to geology: the foundations of a science, 1650-1830. Chicago, Illinois: University of Chicago Press. 

  39. Lawson, A. E. (1995). Science teaching and the development of thinking. Belmont, Calif.: Wadsworth Publication. 

  40. Lederman, N. G., Abd-El-khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497-521. 

  41. Lee, B., Kim, J., Lee, Y., Hong, M., & Shin, D. (2000). 과학과 탐구과정의 하위 요소 추출 및 위계화 [Extraction and hierarchization of sub-elements of science inquiry process] (Report No. RR 98-6). Cheongju: Korea national university of education Institute for Curriculum and Instruction. 

  42. Lee, B., Park, B., & Kim, H. (2007). Analyses of the Basic Inquiry Process in Korean 3-10 Grade Science Textbooks: Focused on Observation and Measurement. Journal of the Korean Association for Science Education, 27(5), 421-431. 

  43. Lee, G., & Kwon, B. (2010). Reasoning-Based Inquriy Model Embedded in Earth Science Phenomena. Journal of the Korean Earth Science Society, 31(2), 185-202. 

  44. Lee, J., Lee, K., Park, Y., Maeng, S., & Oh, H. (2015). A Case Study on Spatial Thinking Revealed in Elementary School Science Class on Solar System and Stars. Journal of the Korean Association for Science Education, 35(2), 179-197. 

  45. Lee, K., Lee, S., Kang, E., Kwon, K., Kim, M., Nam, K., Byun, T., Lee, I., Lee, J., & Cho, Y. (2005). 과학탐구기능 들여다보기 제9장 추리하기 [Look into science inquiry skills chapter 9 Reasoning]. In Seoul National University Science Education Research Center (Ed). 성공적인 중학과학 탐구수업을 위한 길라잡이 자료 [Guidelines for Successful Middle School Science Inquiry Classes]. Retrieved from http://serc.snu.ac.kr/archives/read.php?bdid6&page1&msid660&st&mscat16&mscat2 

  46. Lee, W., Kim, H. S., & Kim, H. (2004). Development and Effects of Program for Enhancement of Spatial Abilities in the Units related to Geology of High School Students. Journal of the Korean Earth Science Society, 25(6), 391-401. 

  47. Lemke, J. (1998). Multiplying meaning: Visual and Verbal Semiotics in Scientific Text. In J. Martin, & R. Veel (Eds.), Reading Science: Critical and Functional Perspectives on Discourses of Science (pp. 87-113). London: Routledge. 

  48. Liben, L. S., & Titus, S. J. (2012). The Improtance of Spatial Thinking for Geoscience Education: Insights from the Crossroads of Geoscience and Cognitive Science. in Kastens, K. A., and Manduca, C. A. (eds.), Earth and Mind II: A Synthesis of research on Thinking and Learning in the Geosciences. 51-70. Boulder, CO: The Geological Society of America Inc. 

  49. Lobben, A. K. (2004). Tasks, Strategies, and Cognitive Processes Associated With Navigational Map Reading: A Review Perspective. The Professional Geographer, 56(2), 270-281. 

  50. Maeng, S., Park, M., Lee, J., & Kim, C. (2007). A Case Study of Middle School Students' Abductive Inference during a Geological Field Excursion. Journal of the Korean Association for Science Education, 27(9), 818-831. 

  51. Magnani, L. (2011). Abduction, Reason and Science: Processes of Discovery and Explanation. NY: Kluwer Academic/Plenum Publishers. 

  52. Martin, D. J. (2012). Elementary Science Methods: A Constructivist Approach (6th Ed). Belmont, CA: Wadsworth Inc. 

  53. Mayer, R. E. (2003). The Promise of Multimedia Learning: Using the Same Instructional Design Methods across Different Media. Learning and Instruction, 13(2), 125-139. 

  54. McComas, W., Clough, M. P., & Almazros, H. (1998). The Role and Character of the Nature of Science in Science Education. In W. McComas, W. (ed). The Nature of Science in Science Education: Rationales and Strategies. Dordrecht: Kluwer Academic Publishers. 

  55. Ministry of Education (MOE). (1997). 7차 과학과 교육과정 [7th Curriculum. -Science-]. Seoul: MOE. MOE Notice No. 1997-15. 

  56. Ministry of Education (MOE). (2015). 2015 개정 과학과 교육과정 [2015 Revised Curriculum -Science-]. Seoul: MOE. MOE Notice No. 2015-74. 

  57. Mogk, D. W., & Goodwin, C. (2012). Learning in the field: Synthesis of research on thinking and learning in the geosciences. Geological Society of America Special Papers, 486, 131-163. 

  58. Munn, B. J., Tracy, R. J., & Jenks, P. J. (1995). A Collaborative Approach to Petrology Field Trips. Journal of Geological Education, 43, 381-381. 

  59. National Research Council (NRC). (2006). Learning to Think Spatially: GIS as a Support System in the K-12 Curriculum. Washington, DC: National Academies Press. 

  60. Oh, P. (2016). Roles of Models in Abductive Reasoning: A Schematization through Theoretical and Empirical Studies. Journal of the Korean Association for Science Education, 36(4), 551-561. 

  61. Oh, P., & Kim, C. (2005). A Theoretical Study on Abduction as an Inquiry Method in Earth Science. Journal of the Korean Association for Science Education, 29(7), 586-601. 

  62. Oh, J., Kim, S., & Kang, Y. (2008). A Suggestion for a Creative Teaching-Learning Program for Gifted Science Students Using Abductive Inference Strategies. Journal of the Korean Association for Science Education, 28(8), 786-795. 

  63. Oh, P., & Oh, S. (2011). A Study on the Processes of Elaborating Hypotheses in Abductive Inquiry of Preservice Elementary School Teachers. Journal of the Korean Association for Science Education, 31(1), 128-142. 

  64. Orion, N., & Ault, C. (2007). Learning Earth Sciences. In S. Abell, & N. Lederman (Eds.), Handbook of Research on Science Teaching and Learning (pp. 653-688). Mahwah, N.J.: Lawrence Erlbaum Associates. 

  65. Orion, N., & Hofstein, A. (1994). Factors that Influence Learning during a Scientific Field Trip in a Natural Environment. Journal of Research in Science Teaching, 31(10), 1097-1120. 

  66. Park, D., & Park, M. (2013). Examining the Features of Earth Science Logical Reasoning and Authentic Scientific Inquiry Demonstrated in a High School Earth Science Curriculum: A Case Study. Journal of Geoscience Education, 61(4), 364-377. 

  67. Park, H., & Cho, H. (2003). Analyses of Scientific Inquiry in Science 8. Journal of the Korean Association for Science Education, 23(3), 239-245. 

  68. Park, J. (2000). Analysis of Students’ Processes of Generating Scientific Explanatory Hypothesis - Focused on the Definition and the Characteristics of Scientific Hypothesis. Journal of the Korean Association for Science Education, 20(4), 667-679. 

  69. Petcovic, H. L., Libarkin, J. C., & Baker, K. M. (2009). An Empirical Methodology for Investigating Geocognition in the Field. Journal of Geoscience Education, 57(4), 316-328. 

  70. Piburn, M. D., Reynolds, S. J., Leedy, D. E., McAuliffe, C. M., Birk, J. P., & Johnson, J. K. (2002). The Hidden Earth: Visualization of Geologic Features and their Subsurface Geometry. In Proceedings of the Annual Meeting of the National Association for Research in Science Teaching. 

  71. Raab, T., & Frodeman, R. (2002). What is it Like to be a Geologist? A Phenomenology of Geology and its Epistemological Implications. Philosophy, & Geography, 5(1), 69-81. 

  72. Renner, J. W., & Stafford, D. G. (1972). Teaching Science in the Secondary School. NY: Harper, & Row. 

  73. Riggs, E. M., & Tretinjak, C. A. (2003). Evaluation of the Effectiveness of a Classroom and Field-based Curriculum Sedimentation and Change through Time for Pre-service Elementary Schoolteachers. Paper presented at the Geological Society of America annual meeting, Seattle, WA. 

  74. Shin, N., & Youn, S. (2006). An Analysis on Inquiry of "Geology Units" in the "Science" Textbooks, the 7th Curriculum. Secondary education research, 54(2), 237-263. 

  75. Smith, B. K., & Reiser, B. J. (2005). Explaining Behavior through Observational Investigation and Theory Articulation. The Journal of the Learning Sciences, 14(3), 315-360. 

  76. Titus, S., & Horsman, E. (2009). Characterizing and Improving Spatial Visualization Skills. Journal of Geoscience Education, 57(4), 242-254. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로