$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

관성측정장치를 이용한 경추 가동범위 측정에 대한 고찰
A review on measuring cervical range of motion using an inertial measurement unit 원문보기

Journal of Korean Medicine = 대한한의학회지, v.38 no.1, 2017년, pp.56 - 71  

임주혁 (경희대학교 대학원 한방인체정보의학과) ,  김현호 (경희대학교 대학원 한방인체정보의학과) ,  박영재 (경희대학교 대학원 한방인체정보의학과) ,  박영배 (경희대학교 대학원 한방인체정보의학과)

Abstract AI-Helper 아이콘AI-Helper

Objectives: The purpose of this study was to review the article using an IMU(Inertial Measurement Unit) for measuring the cervical range of motion and to evaluate the feasibility of using an IMU for measuring the cervical range of motion. Method: Scopus was used to search for the articles relating t...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
관절가동범위란 무엇인가? 관절가동범위(range of motion, ROM)는 경추의 근골격계 질환의 진단 및 평가에 있어 중요한 지표 이다1). ROM과 관련된 두경부 위치 측정은 경항통환자의 진단 및 평가에 있어 무척 중요하며, 외상 및 개인의 질병으로 인한 경항통이 경추의 가동 범위(cervical ROM, CROM)을 제한시킨다는 점도 연구되었다2).
관성측정 장치는 어디에 사용되는가? IMU는 내장된 센서들로부터 각도의 형태로 방향을 기록해 전송하는데, 이를 통해 움직임 데이터를 검출해 자세 지각을 할 수 있게 한다4). 초기에는 자세 제어를 위해 위성, 로켓, 비행기 등에서 주로 사용되었으며, 현재는 대중화되어 스마트폰, 드론, 모터바이크, 스포츠, 애니메이션 등의 다양한 분야들에서 사용된다.5) 뿐만 아니라 의료분야에서도 많이 사용되었는데, 1977년 Frisch G.D.
기계식의 고전적인 장치로는 무엇이 있나? 게다가 임상현장에서 사용하기에는 지나치게 가격이 비싸고 장비의 크기와 무게가 부담된다4). 기계식의 고전적인 장치로는 각도계(goniometry), 경사계(inclinometery), The cervical ROM device 등이 있다. 이 장치들은 기존의 임상현장에서 주로 사용되던 ROM 측정 기기이나14), 측정 내용을 실시간으로 기록하는 것이 불가능하며 3차원의 움직임을 모두 측정하기 어렵고 시간이 많이 소비된다는 단점이 있다15).
질의응답 정보가 도움이 되었나요?

참고문헌 (28)

  1. Peter ST, Michael DJ, Jonathan MW. Do inertial sensors represent a viable method to reliablymeasure cervical spine range of motion? Manual Therapy. 2012;17:92-96. 

  2. Jan MJ, Julia T, Peter C, Gwendolen J. Wireless orientation sensors: Their suitability to measure head movement for neck pain assessment. Manual Therapy. 2007;12:380-385. 

  3. Michele S, Gwendolen J, Bill V, Justin K, Ross D. Physical and psychological factors predict outcome following whiplash injury. Pain. 2005;114:141-148. 

  4. Kim H, Shin SH, Kim JK, Park YJ, Oh HS, Park YB. Cervical Coupling Motion Characteristics in Healthy People Using a Wireless Inertial Measurement Unit. Evidence-Based Complementary and Alternative Medicine. 2013:8. 

  5. Kim H, Park YB. Development of a motion analysis system and clinical indicesfor evaluating cervical rotations[Master's Theses]. 2014. 

  6. Frisch GD, D'Aulerio L, O'Rourke J.Mechanism of head and neck response to G(x) impact acceleration: A math modeling approach. Aviation Space and Environmental Medicine. 1977;48:223-230. 

  7. Hallman DM, Gupta N, Mathiassen SE, Holtermann A. Association between objectively measured sitting time and neck-shoulder pain among blue-collar workers. International Archives of Occupational and Environmental Health. 2015;88(8):1031-1042. 

  8. Kouchakzadeh A, Beigzadeh Y. Permitted working hours with a motorised backpack sprayer. Biosystems Engineering. 2015;136:1-7. 

  9. Lo Martire R, Gladh K, Westman A, Lindholm P, Nilsson J, Ang BO. Neck muscle activity in skydivers during parachute opening shock. Scandinavian Journal of Medicine and Science in Sports. 2016;26(3):307-316. 

  10. Brecl JG, Pelykh O, Kosutzka Z, Pirtosek Z, Trost M, Ilmberger J, at al.Postural stability under globus pallidus internus stimulation for dystonia. Clinical Neurophysiology. 2015;126(12):2299-2305. 

  11. Omkar SN, Vanjare AM, Suhith H, Kumar SGH. Motion analysis for short and long jump. International Journal of Performance Analysis in Sport. 2012;12(1):132-143. 

  12. Pancani S, Rowson J, Tindale W, Heron N, Langley J, McCarthy AD, at al. Assessment of the Sheffield Support Snood, an innovative cervical orthosis designed for people affected by neck muscle weakness. Clinical Biomechanics. 2016;32:201-206. 

  13. Yannick TL, Nicolas B, Alexandre MD, Carol-Anne V. Reliability and criterion validity of two applications of the $iPhone^{(TM)}$ to measure cervical range of motion in healthy participants. Journal of NeuroEngineering and Rehabilitation. 2013;10(69). 

  14. Quek J, Brauer SG, Treleaven J, Pua YH, Mentiplay B, Clark RA. Validity and intra-rater reliability of an Android phone application to measure cervical range-of-motion. Journal of NeuroEngineering and Rehabilitation. 2014;11(65). 

  15. Alqhtani RS, Jones MD, Theobald PS, Williams JM. Reliability of an accelerometer -based system for quantifying multiregional spinal range of motion. Journal of Manipulative and Physiological Therapeutics. 2015;38(4):275-281. 

  16. Higgins MJ, Tierney RT, Caswell S, Driban JB, Mansell J, Clegg S. An in-vivo model of functional head impact testing in non-helmeted athletes. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology. 2009;223(3):117-123. 

  17. Cazzola D, Preatoni E, Stokes KA, England ME, Trewartha G. A modified prebind engagement process reduces biomechanical loading on front row players during scrummaging: A cross-sectional study of 11 elite teams. British Journal of Sports Medicine. 2014;49(8):541-546. 

  18. Kang YS, Moorhouse K, Herriott R, Bolte IV JH. Comparison of Cervical Vertebrae Rotations for PMHS and BioRID II in Rear Impacts. Traffic Injury Prevention. 2013;14 (SUPPL1):S136-S147. 

  19. Khurelbaatar T, Kim K, Lee S, Kim YH. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors. Gait and Posture. 2015;42(1):65-69. 

  20. Pryce R, McDonald N. Prehospital Spinal Immobilization: Effect of Effort on Kinematics of Voluntary Head-neck Motion Assessed using Accelerometry. Prehospital and Disaster Medicine. 2015;31(1):36-42. 

  21. Schiefer C, Kraus T, Ellegast RP, Ochsmann E. A technical support tool for joint range of motion determination in functional diagnostics - An inter-rater study. Journal of Occupational Medicine and Toxicology. 2015;10(16). 

  22. Xu X, Chen KB, Lin JH, Radwin RG. The accuracy of the Oculus Rift virtual reality head-mounted display during cervical spine mobility measurement. Journal of Biomechanics. 2015;48(4):721-724. 

  23. Miyaoka S, Hirano H, Ashida I, Miyaoka Y, Yamada Y. Analysis of head movements coupled with trunk drift in healthy subjects. Medical and Biological Engineering and Computing. 2005;43(3):395-402. 

  24. Milani P, Coccetta CA, Rabini A, Sciarra T, Massazza G, Ferriero G. Mobile smartphone applications for body position measurement in rehabilitation: A review of goniometric tools. PM and R. 2014;6(11):1038-1043. 

  25. Cuesta-Vargas AI, Williams J. Inertial sensor real-time feedback enhances the learning of cervical spine manipulation: A prospective study. European Spine Journal. 2014;23(11); 2314-2320. 

  26. Boissy P, Shrier I, Briere S, Mellete J, Fecteau L, Matheson GO, at al. Effectiveness of cervical spine stabilization techniques. Clinical Journal of Sport Medicine. 2011;21(2):80-88. 

  27. Fleiss JL. Design and analysis of clinical experiments. New York:Wiley Classical Library. 1999. 

  28. Duc C, Salvia P, Lubansu A, Feipel V, Aminian K. A wearable inertial system to assess the cervical spine mobility: Comparison with an optoelectronic-based motion capture evaluation. Medical Engineering and Physics. 2014;36(1):49-56. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로