$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Methanotrophs을 이용한 메탄 저감 기술 최신 동향
Methane Mitigation Technology Using Methanotrophs: A Review 원문보기

Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.45 no.3, 2017년, pp.185 - 199  

조경숙 (이화여자대학교 환경공학과) ,  정혜경 (이화여자대학교 환경공학과)

초록
AI-Helper 아이콘AI-Helper

메탄은 자연적인 발생원과 인위적인 발생원에 의해 배출되며 지구온난화를 야기하는 대표적인 온실가스이다. 메탄을 탄소원과 에너지원으로 이용하는 메탄산화세균은 메탄의 생물학적 산화에 중요한 역할을 한다. 메탄산화세균의 서식지는 매우 다양하며 메탄산화반응의 핵심 효소인 methane monooxygenases (MMOs)는 메탄뿐 아니라 다른 기질을 산화할 수 있는 기질특이성을 가지고 있다. 이러한 메탄산화세균의 특성으로 인해 생물학적 메탄 저감 기술과 생물정화기술 분야에서 메탄산화세균의 활용에 대한 연구가 활발히 진행되고 있다. 본 총설 논문에서는 메탄산화세균의 종류, MMOs의 특성과 메탄산화세균의 고농도 배양 기술에 관한 최근 정보를 정리하였다. 또한 메탄산화세균을 이용한 생물학적 메탄 저감 관련 실험실 규모와 매립지 현장에서의 기술 개발 현황 및 적용 결과를 소개하였다. 이러한 생물학적 메탄 저감 시스템에서 메탄산화세균의 군집 거동 특성도 고찰하였다. 마지막으로, 메탄산화세균을 활용한 생물공학기술의 혁신을 위해 필요한 과제로 대사활성이 우수하거나 신규 대사능력을 가진 메탄산화세균의 지속적인 탐색 연구, 고농도 세포 대량배양기술 개발 및 미생물 컨소시움(메탄산화세균과 비메탄산화세균의 컨소시움) 디자인 및 관리 기술 등이 필요함을 제안하였다.

Abstract AI-Helper 아이콘AI-Helper

Methane, which is emitted from natural and anthropogenic sources, is a representative greenhouse gas for global warming. Methanotrophs are widespread in the environment and play an important role in the biological oxidation of methane via methane monooxygenases (MMOs), key enzymes for methane oxidat...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 메탄산화세균의 종류와 특성을 살펴보고, 이 세균의 대량 배양 기술 개발 현황을 정리하였다. 또한 메탄산화세균을 이용한 메탄 저감 기술 중 바이오커버, 바이오 필터, biowindow 및 biotarp을 중심으로 2010년 이후 최신 기술 개발 동향과 생물공정과정에서 메탄산화세균의 군집 거동 특성을 고찰하였다.
  • 또한 메탄산화세균을 이용한 메탄 저감 기술 중 바이오커버, 바이오 필터, biowindow 및 biotarp을 중심으로 2010년 이후 최신 기술 개발 동향과 생물공정과정에서 메탄산화세균의 군집 거동 특성을 고찰하였다. 이러한 종합 고찰을 통해 메탄산화 세균을 활용한 생물공학기술 혁신을 위한 향후 연구과제를 제안하였다.
  • 이러한 메탄산화세균의 특성으로 인해 생물학적 메탄 저감 기술과 생물정화기술 분야에서 메탄산화세균의 활용에 대한 연구가 활발히 진행되고 있다. 본 총설 논문에서는 메탄산화세균의 종류, MMOs의 특성과 메탄산화세균의 고농도 배양 기술에 관한 최근 정보를 정리하였다. 또한 메탄산화세균을 이용한 생물학적 메탄 저감 관련 실험실 규모와 매립지 현장에서의 기술 개발 현황 및 적용 결과를 소개하였다.
  • 본 총설 논문에서는 메탄산화세균의 종류, MMOs의 특성과 메탄산화세균의 고농도 배양 기술에 관한 최근 정보를 정리하였다. 또한 메탄산화세균을 이용한 생물학적 메탄 저감 관련 실험실 규모와 매립지 현장에서의 기술 개발 현황 및 적용 결과를 소개하였다. 이러한 생물학적 메탄 저감 시스템에서 메탄산화세균의 군집 거동 특성도 고찰하였다.
  • 또한 메탄산화세균을 이용한 생물학적 메탄 저감 관련 실험실 규모와 매립지 현장에서의 기술 개발 현황 및 적용 결과를 소개하였다. 이러한 생물학적 메탄 저감 시스템에서 메탄산화세균의 군집 거동 특성도 고찰하였다. 마지막으로, 메탄산화세균을 활용한 생물공학기술의 혁신을 위해 필요한 과제로 대사활성이 우수하거나 신규 대사능력을 가진 메탄산화세균의 지속적인 탐색 연구, 고농도 세포 대량배양기술 개발 및 미생물 컨소시움(메탄산화세 균과 비메탄산화세균의 컨소시움) 디자인 및 관리 기술 등이 필요함을 제안하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
주요한 인위적 메탄 발생원에는 무엇이 있는가? 전지구적 메탄 배출량의 1/3은 자연적 발생원(주로 습지) 유래이고, 2/3은 인위적 발생원 유래로 추정되고 있다[1]. 주요한 인위적 메탄 발생원은 장내세균에 의한 발효(enteric fermentation), 가스/오일, 매립지, 벼농사, 석탄 채광, 폐수 처리 등이다[Table 1] [1, 3]. 인위적인 메탄 발생 기작은 크게 3가지로 분류할 수 있다.
Methylotrophic bacteria란? Methylotrophic bacteria는 메탄, 메탄올, 메틸화된 아민, halomethane 등과 같이 C1 화합물을 이용할 수 있는 세균을 지칭하는데, 메탄산화세균은 methylotrophic bacteria에 속하는 대표적인 세균이다. 메탄산화세균은 메탄을 유일 탄소원과 에너지원으로 이용할 수 있는 그람 음성의 호기성 세균이다[2].
메탄을 온실가스인 이산화탄소로 산화시키는 메탄 저감 기술이 온실효과를 줄일 수 있는 이유는? 따라서 메탄의 궁극적인 저감 기작은 메탄을 이산화탄소로 산화시켜 처리하는 것이다[1]. 비록 메탄의 산화물인 이산화탄소 역시 온실가스이지만, 메탄의 GWP가 이산화탄소 보다 27배나 크기 때문에, 메탄의 온실효과를 1/27 수준으로 저하시키는 효과를 얻을 수 있다. 메탄을 이산화탄소로 산화시키는 과정에서 발열반응이 일어나고 이 반응이 일어나기 위해서는 활성화 에너지(430 kJ/mol)가 필요하다.
질의응답 정보가 도움이 되었나요?

참고문헌 (74)

  1. Stolaroff JK, Bhattacharyya S, Smith CA, Bourcier WL, Cameron-Smith PJ, Aines RD. 2012. Review of methane mitigation technologies with application to rapid release of methane from the Arctic. Environ. Sci. Technol. 46: 6455-6469. 

  2. Cho KS, Ryu HW. 2009. Biotechnology for the mitigation of methane emission from landfills. Korean J. Microbiol. Biotechnol. 37: 293-305. 

  3. EPA. 2011. Draft: Global Anthropogenic Non- $CO_2$ GHG Emissions: 1990-2030; U.S. Environmental Protection Agency: Washington, DC. 

  4. Boucher O, Folberth GA. 2010. New directions: atmospheric methane removal as a way to mitigate climate change? Atmos. Environ. 44: 3343-3345. 

  5. Carothers FP, Schultz HL, Talkington CC. 2003. Mitigation of methane emissions from coal mine ventilation air: An update. US Environmental Protection Agency: Washington, DC. 

  6. Kalyuzhnaya MG, Puri AW, Lidstrom ME. 2015. Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29: 142-152. 

  7. Chistoserdova L, Vorholt JA, Lidstrom ME. 2005. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol. 6: 208. 

  8. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, et al. 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879. 

  9. Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland N-K. 2008. Methane oxidation at 55 C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc. Natl. Acad. Sci. 105: 300-304. 

  10. van Teeseling MC, Pol A, Harhangi HR, van der Zwart S, Jetten MS, den Camp HJO, et al. 2014. Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl. Environ. Microbiol. 80: 6782-6791. 

  11. Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi C, et al. 2006. Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc. Natl. Acad. Sci. USA 103: 2363-2367. 

  12. Vigliotta G, Nutricati E, Carata E, Tredici SM, De Stefano M, Pontieri P, et al. 2007. Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic $\gamma$ -proteobacterium. Appl. Environ. Microbiol. 73: 3556-3565. 

  13. Lee JH, Kim TG, Cho KS. 2012. Isolation and characterization of a facultative methanotroph degrading malodor-causing volatile sulfur compounds. J. Hazard. Mater. 235: 224-229. 

  14. Zhang W, Ge X, Li YF, Yu Z, Li Y. 2016. Isolation of a methanotroph from a hydrogen sulfide-rich anaerobic digester for methanol production from biogas. Proc. Biochem. 51: 838-844. 

  15. ReuB J, Rachel R, Kampfer P, Rabenstein A, Kuver J, Droge S, et al. 2015. Isolation of methanotrophic bacteria from termite gut. Microbiol. Res. 179: 29-37. 

  16. Bowman JP, McCammon SA, Skerrat JH. 1997. Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143: 1451-1459. 

  17. Bodrossy L, Kovacs KL, McDonald IR, Murrell JC. 1999. A novel thermophilic methane-oxidising $\gamma$ -Proteobacterium. FEMS Microbiol. Lett. 170: 335-341. 

  18. Kang TJ, Lee EY. 2016. Metabolic versatility of microbial methane oxidation for biocatalytic methane conversion. J. Ind. Eng. Chem. 35: 8-13. 

  19. Costa KC, Leigh JA. 2014. Metabolic versatility in methanogens. Curr. Opin. Biotechnol. 29: 70-75. 

  20. Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, et al. 2010. Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem. Eng. J. 49: 277-288. 

  21. Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471. 

  22. Stanley S, Prior S, Leak D, Dalton H. 1983. Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol. Lett. 5: 487-492. 

  23. Smith DDS, Dalton H. 1989. Solubilisation of methane monooxygenase from Methylococcus capsulatus (Bath). The FEBS J. 182: 667-671. 

  24. Elliott SJ, Zhu M, Tso L, Nguyen H-HT, Yip JH-K, Chan SI. 1997. Regio-and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 119: 9949-9955. 

  25. Lontoh S, Zahn JA, DiSpirito AA, Semrau JD. 2000. Identification of intermediates of in vivo trichloroethylene oxidation by the membrane-associated methane monooxygenase. FEMS Microbiol. Lett. 186: 109-113. 

  26. Colby J, Stirling DI, Dalton H. 1977. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165: 395-402. 

  27. Green J, Dalton H. 1989. Substrate specificity of soluble methane monooxygenase. Mechanistic implications. J. Biol. Chem. 264: 17698-17703. 

  28. Burrows KJ, Cornish A, Scott D, Higgins IJ. 1984. Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b. Microbiology 130: 3327-3333. 

  29. Fox BG, Borneman JG, Wackett LP, Lipscomb JD. 1990. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29: 6419-6427. 

  30. Brusseau GA, Tsien H-C, Hanson RS, Wackett LP. 1990. Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1: 19-29. 

  31. Lindner AS, Adriaens P, Semrau JD. 2000. Transformation of ortho-substituted biphenyls by Methylosinus trichosporium OB3b: substituent effects on oxidation kinetics and product formation. Arch. Microbiol. 174: 35-41. 

  32. Dalton H. 1977. Ammonia oxidation by the methane oxidising bacterium Methylococcus capsulatus strain Bath. Arch. Microbiol. 114: 273-279. 

  33. Shah NN, Park S, Taylor RT, Droege MW. 1992. Cultivation of Methylosinus trichosporium OB3b: III. Production of particulate methane monooxygenase in continuous culture. Biotechnol. Bioeng. 40: 705-712. 

  34. Shah NN, Hanna ML, Jackson KJ, Taylor RT. 1995. Batch cultivation of Methylosinus trichosporium OB3B: IV. Production of hydrogen­driven soluble or particulate methane monooxygenase activity. Biotechnol. Bioeng. 45: 229-238. 

  35. Lee J, Soni BK, Kelley RL. 1996. Cell growth and oxygen transfer in Methylosinus trichosporium OB3b cultures. Biotechnol. Lett. 18: 903-908. 

  36. Takeguchi M, Okura I. 2000. Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catal. Surv. Japan. 4: 51-63. 

  37. Han B, Su T, Wu H, Gou Z, Xing X-H, Jiang H, et al. 2009. Paraffin oil as a "methane vector" for rapid and high cell density cultivation of Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 83: 669-677. 

  38. Yu SSF, Chen KHC, Tseng MYH, Wang YS, Tseng CF, Chen YJ, et al. 2003. Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J. Bacteriol. 185: 5915-5924. 

  39. Jiang H, Duan C, Jiang P, Liu M, Luo M, Xing X-H. 2016. Characteristics of scale-up fermentation of mixed methane-oxidizing bacteria. Biochem. Eng. J. 109: 112-117. 

  40. Adegbola O. 2008. High cell density methanol cultivation of Methylosinus trichosporium OB3b. Department of Chemical Engineering, Master of Science, Queen's University, Kingston 

  41. Huber-Humer M, Gebert J, Hilger H. 2008. Biotic systems to mitigate landfill methane emissions. Waste Manage. Res. 26: 33-46. 

  42. Majdinasab A, Yuan Q. 2017. Performance of the biotic systems for reducing methane emissions from landfill sites: A review. Ecol. Eng. 104: 116-130. 

  43. Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, et al. 2009. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manage. Res. 27: 409-455. 

  44. Bajar S, Singh A, Kaushik C, Kaushik A. 2016. Evaluation and statistical optimization of methane oxidation using rice husk amended dumpsite soil as biocover. Waste Manage. 53: 136-143. 

  45. Wang J, Xia FF, Bai Y, Fang CR, Shen DS, He R. 2011. Methane oxidation in landfill waste biocover soil: kinetics and sensitivity to ambient conditions. Waste Manage. 31: 864-870. 

  46. Siva Shangari G, Agamuthu P. 2012. Enhancing methane oxidation in landfill cover using brewery spent grain as biocover. Malaysian J. Sci. 31: 91-97. 

  47. Pedersen GB, Scheutz C, Kjeldsen P. 2011. Availability and properties of materials for the Fakse landfill biocover. Waste Manage. 31: 884-894. 

  48. Lu WJ, Chi ZF, Mou ZS, Long YY, Wang HT, Zhu Y. 2011. Can a breathing biocover system enhance methane emission reduction from landfill? J. Hazard. Mater. 191: 228-233. 

  49. Lee EH, Moon KE, Kim TG, Cho KS. 2014. Depth profiles of methane oxidation potentials and methanotrophic community in a lab-scale biocover. J. Biotechnol. 184: 56-62. 

  50. Lee EH, Moon KE, Cho KS. 2017. Long-term performance and bacterial community dynamics in biocovers for mitigating methane and malodorous gases. J. Biotechnology 242: 1-10. 

  51. Kim GW, Ho A, Kim PJ, Kim SY. 2016. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover. Waste Manage. 55: 306-312. 

  52. Bogner JE, Chanton JP, Blake D, Abichou T, Powelson D. 2010. Effectiveness of a Florida landfill biocover for reduction of $CH_4$ and NMHC emissions. Environ. Sci. Technol. 44: 1197-1203. 

  53. Scheutz C, Pedersen RB, Petersen PH, Jorgensen JHB, Ucendo IMB, Monster JG, et al. 2014. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system. Waste Manage. 34: 1179-1190. 

  54. Mei C, Yazdani R, Han B, Mostafid ME, Chanton J, Vander-Gheynst J, et al. 2015. Performance of green waste biocovers for enhancing methane oxidation. Waste Manage. 39: 205-215. 

  55. Geck C, Scharff H, Pfeiffer E-M, Gebert J. 2016. Validation of a simple model to predict the performance of methane oxidation systems, using field data from a large scale biocover test field. Waste Manage. 56: 280-289. 

  56. Cassini F, Scheutz C, Skov BH, Mou Z, Kjeldsen P. 2017. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljo Landfill, Denmark: 1. System design and gas distribution. Waste Manage. 63: 213-225. 

  57. Scheutz C, Cassini F, De Schoenmaeker J, Kjeldsen P. 2017. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljo Landfill, Denmark: 2. Methane oxidation. Waste Manage. 63: 203-212. 

  58. Bohn S, Brunke P, Gebert J, Jager J. 2011. Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency. Waste Manage. 31: 854-863. 

  59. Kim TG, Jeong SY, Cho KS. 2014. Characterization of tobermolite as a bed material for selective growth of methanotrophs in biofiltration. J. Biotechnol. 173: 90-97. 

  60. Han D, Zhao Y, Xue B, Chai X. 2010. Effect of bio-column composed of aged refuse on methane abatement-A novel configuration of biological oxidation in refuse landfill. J. Environ. Sci. 22: 769-776. 

  61. Farrokhzadeh H, Hettiaratchi JPA, Jayasinghe P, Kumar S. 2017. Aerated biofilters with multiple-level air injection configurations to enhance biological treatment of methane emissions. Bioresour. Technol. 239: 219-225. 

  62. Ganendra G, Mercado-Garcia D, Hernandez-Sanabria E, Peiren N, De Campeneere S, Ho A, et al. 2015. Biofiltration of methane from ruminants gas effluent using autoclaved aerated concrete as the carrier material. Chem. Eng. J. 277: 318-323. 

  63. Wu YM, Yang J, Fan XL, Fu SF, Sun MT, Guo RB. 2017. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria. Bioresour. Technol. 231: 124-128. 

  64. Scheutz C, Fredenslund AM, Chanton J, Pedersen GB, Kjeldsen P. 2011. Mitigation of methane emission from Fakse landfill using a biowindow system. Waste Manage. 31: 1018-1028. 

  65. Adams BL, Besnard F, Bogner J, Hilger H. 2011. Bio-tarp alternative daily cover prototypes for methane oxidation atop open landfill cells. Waste Manage. 31: 1065-1073. 

  66. Mei J, Wang L, Han D, Zhao Y. 2011. Methanotrophic community structure of aged refuse and its capability for methane bio-oxidation. J. Environ. Sci. 23: 868-874. 

  67. Kumaresan D, Hery M, Bodrossy L, Singer AC, Stralis-Pavese N, Thompson IP, et al. 2011. Earthworm activity in a simulated landfill cover soil shifts the community composition of active methanotrophs. Res. Microbiol. 162: 1027-1032. 

  68. Zhang X, Kong JY, Xia FF, Su Y, He R. 2014. Effects of ammonium on the activity and community of methanotrophs in landfill biocover soils. System.Appl. Microbiol. 37: 296-304. 

  69. Xing Z, Zhao T, Gao Y, He Z, Zhang L, Peng X, et al. 2017. Real-time monitoring of methane oxidation in a simulated landfill cover soil and MiSeq pyrosequencing analysis of the related bacterial community structure. Waste Manage. 68: 369-377. 

  70. Wang X, Cao A, Zhao G, Zhou C, Xu R. 2017. Microbial community structure and diversity in a municipal solid waste landfill. Waste Manage. 66: 79-87. 

  71. Kong JY, Bai Y, Su Y, Yao Y, He R. 2014. Effects of trichloroethylene on community structure and activity of methanotrophs in landfill cover soils. Soil Biol. Biochem. 78: 118-127. 

  72. Chi Z, Lu W, Wang H, Zhao Y. 2012. Diversity of methanotrophs in a simulated modified biocover reactor. J. Environ. Sci. 24: 1076-1082. 

  73. Ait-Benichou S, Jugnia L-B, Greer CW, Cabral AR. 2009. Methanotrophs and methanotrophic activity in engineered landfill biocovers. Waste Manage. 29: 2509-2517. 

  74. Su Y, Zhang X, Xia FF, Zhang QQ, Kong JY, Wang J, et al. 2014. Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems. Syst. Appl. Microbiol. 37: 200-207. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로