$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

미세유체 장치에서 부분젤화법을 이용한 단분산성 펙틴 하이드로젤 미세섬유의 제조
Manufacturing of Monodisperse Pectin Hydrogel Microfibers Using Partial Gelation in Microfluidic Devices 원문보기

청정기술 = Clean technology, v.23 no.3, 2017년, pp.270 - 278  

진시형 (충남대학교 공과대학 화학공학과) ,  김채연 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ,  이병진 (충남대학교 공과대학 화학공학과) ,  심규락 (충남대학교 공과대학 화학공학과) ,  김동영 (충남대학교 공과대학 화학공학과) ,  이창수 (충남대학교 공과대학 화학공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 미세유체 장치에서 매우 균일한 펙틴 하이드로젤 미세섬유를 부분젤화법을 통해 손쉽게 제조하는 방법을 소개한다. 펙틴 수용액과 이와 섞이지 않는 칼슘이 분산된 오일용액 사이의 수력학적 변수들을 조절하여 펙틴 수용액의 흐름을 안정적으로 늘어진 유동을 형성하고 두 상의 계면에서 칼슘 이온의 킬레이트화 반응으로 펙틴 수용액을 부분젤화 시킨다. 부분젤화된 펙틴 수용액은 미세유체 장치 외부의 염화칼슘 수용액에서 오일 용액과 상분리 되고 완전히 젤화되어 미세섬유로 제조된다. 펙틴 하이드로젤 미세섬유의 굵기는 초기 주입되는 펙틴 수용액의 부피유속을 조절함으로써 재현성 있게 제어된다. 제조된 펙틴 하이드로젤 미세섬유의 직경은 200에서 500 마이크로미터 범위이며 모든 두께 조건에서 5% 이하의 변동계수를 가짐으로써 매우 균일함을 증명하였다. 또한 펙틴 하이드로젤 미세섬유에 생체물질을 단일공정으로 고정화 함으로써 생체물질 담지체나 조직공학의 지지체로써 사용될 수 있는 가능성을 보여준다.

Abstract AI-Helper 아이콘AI-Helper

This study introduces a method to easily fabricate highly monodisperse pectin hydrogel microfibers in a microfluidic device by using partial gelation. The hydrodynamic parameters between the pectin aqueous solution and the calcium ions containing oil solution are precisely controlled to form a stabl...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 펙틴 하이드로젤의 점도에 따른 강성(stiffness)과 표면특성을 분석하였으며 미세유로 내에서 수력학적 변수조절에 따른 펙틴 수용액의 유동(flow) 특성을 상도표로 정리하였다. 펙틴 하이드로젤 미세섬유의 제조에 있어서 부분젤화 유무에 따른 대조 실험을 수행함으로써 부분젤화의 필요성을 증명하였다. 형성되는 펙틴 하이드로젤 미세섬유는 분산상의 부피유속으로 굵기를 자유롭게 제어하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
하이드로젤의 사용목적에 따른 제조 형태는 어떻게 되는가? 하이드로젤(hyrogel)은 탁월한 친수성 및 생체 적합성으로 인해 약물전달 시스템[1-3], 식품산업[4,5], 생의학 공학[6,7] 및 조직 공학의 지지체(scaffold)로써 많은 주목을 받고 있다[8,9]. 하이드로젤은 사용목적에 따라 입자(particle) [10-12], 섬유(fiber) [13-18], 시트(sheet) [19,20], 패드(pad) [21,22]와 같이 다양한 형태로 제조된다. 특히 하이드로젤 섬유는 체내의 혈관처럼 산소, 영양분, 대사 산물과 같은 물질의 이동이 용이하여 특히 조직 공학 분야에서 각광받는 소재로 활발히 연구되고 있다[23,24].
하이드로젤 섬유가 조직 공학 분야에서 각광받는 이유는 무엇인가? 하이드로젤은 사용목적에 따라 입자(particle) [10-12], 섬유(fiber) [13-18], 시트(sheet) [19,20], 패드(pad) [21,22]와 같이 다양한 형태로 제조된다. 특히 하이드로젤 섬유는 체내의 혈관처럼 산소, 영양분, 대사 산물과 같은 물질의 이동이 용이하여 특히 조직 공학 분야에서 각광받는 소재로 활발히 연구되고 있다[23,24]. 뿐만 아니라 하이드로젤은 천연 혹은 합성 고분자의 구성성분과 구성비율에 따라서 팽윤 및 수축성, 탄성, 극성, 기계적 특성 등 다양한 물성을 손쉽게 조절할 수 있다[25,26].
천연 고분자 중 하나인 펙틴이 하이드로젤을 형성하는 과정은 무엇인가? 이 중에서 천연 고분자인 펙틴은 고등 식물의 세포벽에 존재하는 복잡한 구조의 폴리사카라이드(polysaccharide)로써 식품산업에서 젤화제(gelling agent) 및 증점제(thickening agent)로써 오랫동안 사용되어온 물질이다[38]. 펙틴은 대부분 에스터화 된 D-갈락투론산(esterfied D-galacturonic acid)으로 구성되며 칼슘과 같은 2가 양이온과 킬레이트화 반응(chelation)에 의해서 젤화(gelation)되어 계란상자(egg box)구조의 하이드로젤을 형성한다[39]. 펙틴의 계란상자 구조에 세포나 생활성(bioactive) 물질을 함입할 수 있음으로써 상처 치료(wound dressing) [40], 유전자 전달(gene transfer) [41]에 사용될 뿐 아니라 킬레이트화 반응을 이용하여 대장-특이적 약물전달(colonspecific drug delivery system)이 가능한 천연 질병예방제(natural prophylactic agent)로써 사용될 수 있다[38,42].
질의응답 정보가 도움이 되었나요?

참고문헌 (50)

  1. Kikuchi, A., and Okano, T., "Pulsatile Drug Release Control Using Hydrogels," Adv. Drug Delivery Rev., 54(1), 53-77 (2002). 

  2. Peppas, N. A., Hilt, J. Z., Khademhosseini, A., and Langer, R., "Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology," Adv. Mater., 18(11), 1345-1360 (2006). 

  3. Lee, E., and Kim, B., "Smart Delivery System for Cosmetic Ingredients using pH-Sensitive Polymer Hydrogel Particles," Korean J. Chem. Eng., 28(6), 1347-1350 (2011). 

  4. Shewan, H. M., and Stokes, J. R., "Review of Techniques to Manufacture Micro-Hydrogel Particles for the Food Industry and Their Applications," J. Food Eng., 119(4), 781-792 (2013). 

  5. Zhang, Z. P., Zhang, R. J., Tong, Q. Y., Decker, E. A., and McClements, D. J., "Food-Grade Filled Hydrogels for Oral Delivery of Lipophilic Active Ingredients: Temperature-Triggered Release Microgels," Food Res. Int., 69(1), 274-280 (2015). 

  6. Zhang, Y. N., Avery, R. K., Vallmajo-Martin, Q., Assmann, A., Vegh, A., Memic, A., Olsen, B. D., Annabi, N., and Khademhosseini, A., "A Highly Elastic and Rapidly Crosslinkable Elastin-Like Polypeptide-Based Hydrogel for Biomedical Applications," Adv. Funct. Mater., 25(30), 4814-4826 (2015). 

  7. Li, Y. L., Neoh, K. G., and Kang, E. T., "Poly (vinyl alcohol) Hydrogel Fixation on Poly(ethylene terephthalate) Surface for Biomedical Application," Polymer, 45(26), 8779-8789 (2004). 

  8. Drury, J. L., and Mooney, D. J., "Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications," Biomaterials, 24(24), 4337-4351 (2003). 

  9. Matsunaga, Y. T., Morimoto, Y., and Takeuchi, S., "Molding Cell Beads for Rapid Construction of Macroscopic 3D Tissue Architecture," Adv. Mater., 23(12), H90-H94 (2011). 

  10. Park, K. S., Kim, C., Nam, J. O., Kang, S. M., and Lee, C. S., "Synthesis and Characterization of Thermosensitive Gelatin Hydrogel Microspheres in a Microfluidic System," Macromol. Res., 24(6), 529-536 (2016). 

  11. Lewis, C. L., Choi, C. H., Lin, Y., Lee, C. S., and Yi, H., "Fabrication of Uniform DNA-Conjugated Hydrogel Microparticles via Replica Molding for Facile Nucleic Acid Hybridization Assays," Anal. Chem., 82(13), 5851-5858 (2010). 

  12. Yang, C. X., Choi, C. H., Lee, C. S., and Yi, H. M., "A Facile Synthesis-Fabrication Strategy for Integration of Catalytically Active Viral-Palladium Nanostructures into Polymeric Hydrogel Microparticles via Replica Molding," ACS Nano, 7(6), 5032-5044 (2013). 

  13. He, X. H., Wang, W., Deng, K., Xie, R., Ju, X. J., Liu, Z., and Chu, L. Y., "Microfluidic Fabrication of Chitosan Microfibers with Controllable Internals from Tubular to Peapod-Like Structures," RSC Adv., 5(2), 928-936 (2015). 

  14. Bai, Z. H., Reyes, J. M. M., Montazami, R., and Hashemi, N., "On-Chip Development of Hydrogel Microfibers from Round to Square/Ribbon Shape," J. Mater. Chem. A, 2(14), 4878-4884 (2014). 

  15. Onoe, H., and Takeuchi, S., "Cell-Laden Microfibers for Bottom-up Tissue Engineering," Drug. Discovery Today, 20(2), 236-246 (2015). 

  16. Choi, C. H., Yi, H., Hwang, S., Weitz, D. A., and Lee, C. S., "Microfluidic Fabrication of Complex-Shaped Microfibers by Liquid Template-Aided Multiphase Microflow," Lab Chip, 11(8), 1477-1483 (2011). 

  17. Choi, C. H., Jung, J. H., and Lee, C. S., "In situ Microfluidic Method for the Generation of Uniform PEG Microfiber," Korean Chem. Eng. Res., 48(4), 470-474 (2010). 

  18. Jung, J. H., Choi, C. H., Chung, S., Chung, Y. M., and Lee, C. S., "Microfluidic Synthesis of a Cell Adhesive Janus Polyurethane Microfiber," Lab Chip, 9(17), 2596-2602 (2009). 

  19. Burd, A., "Evaluating the Use of Hydrogel Sheet Dressings in Comprehensive Burn Wound Care," Ostomy Wound Manag., 53(3), 52-62 (2007). 

  20. Leng, L., McAllister, A., Zhang, B. Y., Radisic, M., and Gunther, A., "Mosaic Hydrogels: One-Step Formation of Multiscale Soft Materials," Adv. Mater., 24(27), 3650-3658 (2012). 

  21. Rattanaruengsrikul, V., Pimpha, N., and Supaphol, P., "In vitro Efficacy and Toxicology Evaluation of Silver Nanoparticle-Loaded Gelatin Hydrogel Pads as Antibacterial Wound Dressings," J. Appl. Polym. Sci., 124(2), 1668-1682 (2012). 

  22. Paquet, P., Pierard-Franchimont, C., Pierard, G. E., and Quatresooz, P., "Skin Fungal Biocontamination and the Skin Hydrogel Pad Test," Arch. Dermatol. Res., 300(4), 167-171 (2008). 

  23. Lim, D., Lee, E., Kim, H., Park, S., Baek, S., and Yoon, J., "Multi Stimuli-Responsive Hydrogel Microfibers Containing Magnetite Nanoparticles Prepared Using Microcapillary Devices," Soft Matter, 11(8), 1606-1613 (2015). 

  24. Heo, Y. J., Shibata, H., Okitsu, T., Kawanishi, T., and Takeuchi, S., "Long-Term in vivo Glucose Monitoring Using Fluorescent Hydrogel Fibers," Proc. Natl. Acad. Sci. USA, 108(33), 13399-13403 (2011). 

  25. Ahmed, E. M., "Hydrogel: Preparation, Characterization, and Applications: A review," J. Adv. Res., 6(2), 105-121 (2015). 

  26. Kim, C., Park, K. S., Kang, S. M., Kim, J., Song, Y., and Lee, C. S., "Comparison of Pectin Hydrogel Collection Methods in Microfluidic Device," Korean Chem. Eng. Res., 53(6), 740-745 (2015). 

  27. Choi, C. H., Jung, J. H., Rhee, Y. W., Kim, D. P., Shim, S. E., and Lee, C. S., "Generation of Monodisperse Alginate Microbeads and in situ Encapsulation of Cell in Microfluidic Device," Biomed. Microdevices, 9(6), 855-862 (2007). 

  28. Song, Y., and Lee, C. S., "In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions," Korean Chem. Eng. Res., 52(5), 632-637 (2014). 

  29. Kim, C., Park, K. S., Kim, J., Jeong, S. G., and Lee, C. S., "Microfluidic Synthesis of Monodisperse Pectin Hydrogel Microspheres Based on in situ Gelation and Settling Collection," J. Chem. Technol. Biotechnol., 92(1), 201-209 (2017). 

  30. Cheng, Y. H., Yang, S. H., Su, W. Y., Chen, Y. C., Yang, K. C., Cheng, W. T. K., Wu, S. C., and Lin, F. H., "Thermosensitive Chitosan-Gelatin-Glycerol Phosphate Hydrogels as a Cell carrier for Nucleus Pulposus Regeneration: An in vitro Study," Tissue Eng. Part A, 16(2), 695-703 (2010). 

  31. Hosseini, Y., Agah, M., and Verbridge, S. S., "Endothelial Cell Sensing, Restructuring, and Invasion in Collagen Hydrogel Structures," Integr. Biol., 7(11), 1432-1441 (2015). 

  32. Chicatun, F., Muja, N., Serpooshan, V., Quinn, T. M., and Nazhat, S. N., "Effect of Chitosan Incorporation on the Consolidation Process of Highly Hydrated Collagen Hydrogel Scaffolds," Soft Matter, 9(45), 10811-10821 (2013). 

  33. Lin, C. C., and Anseth, K. S., "PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine," Pharm. Res., 26(3), 631-643 (2009). 

  34. Kozlovskaya, V., Kharlampieva, E., Mansfield, M. L., and Sukhishvili, S. A., "Poly(methacrylic acid) Hydrogel Films and Capsules: Response to pH and Ionic Strength, and Encapsulation of Macromolecules," Chem. Mater., 18(2), 328-336 (2006). 

  35. Brazel, C. S., and Peppas, N. A., "Synthesis and Characterization of Thermomechanically and Chemomechanically Responsive Poly(n-isopropylacrylamide-co-methacrylic acid) Hydrogels," Macromolecules, 28(24), 8016-8020 (1995). 

  36. Nagaoka, N., Safranj, A., Yoshida, M., Omichi, H., Kubota, H., and Katakai, R., "Synthesis of Poly(n-isopropylacrylamide) Hydrogels by Radiation Polymerization and Cross-Linking," Macromolecules, 26(26), 7386-7388 (1993). 

  37. Zhang, X. Z., and Chu, C. C., "Preparation of Thermosensitive PNIPAAm Hydrogels with Superfast Response," Chem. Commun., 0(3), 350-351 (2004). 

  38. Neves, S. C., Gomes, D. B., Sousa, A., Bidarra, S. J., Petrini, P., Moroni, L., Barrias, C. C., and Granja, P. L., "Biofunctionalized Pectin Hydrogels as 3D Cellular Microenvironments," J. Mater. Chem. B, 3(10), 2096-2108 (2015). 

  39. Ninan, N., Muthiah, M., Park, I. K., Elain, A., Thomas, S., and Grohens, Y., "Pectin/Carboxymethyl Cellulose/Microfibrillated Cellulose Composite Scaffolds for Tissue Engineering," Carbohydr. Polym., 98(1), 877-885 (2013). 

  40. Munarin, F., Tanzi, M. C., and Petrini, P., "Advances in Biomedical Applications of Pectin Gels," Int. J. Biol. Macromol., 51(4), 681-689 (2012). 

  41. Katav, T., Liu, L., Traitel, T., Goldbart, R., Wolfson, M., and Kost, J., "Modified Pectin-Based Carrier for Gene Delivery: Cellular Barriers in Gene Delivery Course," J. Controlled Release, 130(2), 183-191 (2008). 

  42. Eliaz, I., Weil, E., and Wilk, B., "Integrative Medicine and the Role of Modified Citrus Pectin/Alginates in Heavy Metal Chelation and Detoxification - Five Case Reports," Forsch. Komplementmed., 14(6), 358-364 (2007). 

  43. Hochmuth, R. M., "Micropipette Aspiration of Living Cells," J. Biomech., 33(1), 15-22 (2000). 

  44. Boyd, D. A., Adams, A. A., Daniele, M. A., and Ligler, F. S., "Microfluidic Fabrication of Polymeric and Biohybrid Fibers with Predesigned Size and Shape," J. Visualized Exp., (83), e50958 (2014). 

  45. Peran, M., Garcia, M. A., Lopez-Ruiz, E., Jimenez, G., and Marchal, J. A., "How Can Nanotechnology Help to Repair the Body? Advances in Cardiac, Skin, Bone, Cartilage and Nerve Tissue Regeneration," Materials, 6(4), 1333-1359 (2013). 

  46. Chen, Z. T., Ni, S. Y., Han, S. W., Crawford, R., Lu, S., Wei, F., Chang, J., Wu, C. T., and Xiao, Y., "Nanoporous Microstructures Mediate Osteogenesis by Modulating the Osteo-Immune Response of Macrophages," Nanoscale, 9(2), 706-718 (2017). 

  47. Schindler, M., and Ajdari, A., "Droplet Traffic in Microfluidic Networks: A Simple Model for Understanding and Designing," Phys. Rev. Lett., 100(4), (2008). 

  48. Nisisako, T., and Torii, T., "Formation of Biphasic Janus Droplets in a Microfabricated Channel for the Synthesis of Shape-Controlled Polymer Microparticles," Adv. Mater., 19(11), 1489-1493 (2007). 

  49. Nie, Z. H., Xu, S. Q., Seo, M., Lewis, P. C., and Kumacheva, E., "Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors," J. Am. Chem. Soc., 127(22), 8058-8063 (2005). 

  50. Xu, X. L., and Asher, S. A., "Synthesis and Utilization of Monodisperse Hollow Polymeric Particles in Photonic Crystals," J. Am. Chem. Soc., 126(25), 7940-7945 (2004). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로