$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

식생체류지의 도시 강우유출수 처리효율 영향인자 조사 연구
Investigation on the Factors Affecting Urban Stormwater Management Performance of Bioretention Systems 원문보기

한국물환경학회지 = Journal of Korean Society on Water Environment, v.33 no.1, 2017년, pp.1 - 7  

(공주대학교 건설환경공학과) ,  (공주대학교 건설환경공학과) ,  홍정선 (공주대학교 건설환경공학과) ,  김이형 (공주대학교 건설환경공학과)

초록
AI-Helper 아이콘AI-Helper

식생체류지는 도시 강우유출수 관리를 위한 저영향개발그린인프라 기술이며, 개발이전의 상태를 최대한 유지하는 강우유출수 관리기술로 자연을 모방하면서 생태계의 다양성을 향상시키는 기술이다. 본 연구는 식생체류지의 물순환 능력과 비점오염물질의 저감효율에 영향을 끼치는 인자를 도출하기 위하여 4개의 식생체류지 시스템에 대하여 연구를 수행하였다. 2개의 식생체류지, 즉 Type A-C와 Type A-FC에는 국화와 매발톱꽃이 식재되었으며, Type B-A와 Type B-JM식생체류지에는 진달래 및 조팝나무와 같은 관목식물이 식재되었다. 연구결과 식생체류지의 유출저감, 저류량 및 오염물질 저감에 영향을 끼치는 인자로는 TV, 침투기작, 여과재의 두께와 식생 종류로 나타났다. Type B-A와 Type B-JM식생체류지 설계시에는 유출저감, 지하수 충진, 긴 체류시간과 첨두유출량 저감과 비점오염물질 저감을 고려하여 설계가 필요한 것으로 나타났다. 반면에 Type A-C와 Type A-FC 식생체류지 설계시에는 지하수 오염 저감을 중요하게 고려하여야 하는 것으로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

Bioretention systems, an advance low impact development and green infrastructure approach were currently utilized in different parts of the world because it promotes biodiversity thereby mimicking and preserving the pre-developed state of an area. This study investigated and compared the capability ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The four bioretention systems were subjected to five inflow rates of 2, 3, 4, 5 and 6 L/min representing 55%, 60%, 65%, 70% and 75%, respectively of rainfall depth occurring in Cheonan city, South Korea. Experimental scenarios were demonstrated in Fig. 2 wherein chemical properties of water and plants were tested in accordance with the standard methods for examination of water and waste water and handbook of reference methods for plant analysis, respectively (APHA, AWWA, and WEF, 1992; Kalra, 1998).
  • Four bioretention systems were developed and investigated in this study. Type A and Type B bioretention systems were identical in media configuration but has different dimensions as demonstrated in Fig.
  • Bioretention systems, an innovative example of green infrastructure were currently utilized in different parts of the world due to its capability to promote biodiversity thereby mimicking and preserving the pre-developed state of an area. Four laboratory scale bioretention systems were investigated and compared to identify factors affecting the hydraulic capabilities and pollutant removal efficiencies in each system and be used to design similar bioretention system. Based on the results of this study, the followings conclusions were summarized as follows:
  • Although bioretention systems were widely utilized in different countries, its application in South Korea still required further evaluation. In this research, two laboratory scale system was developed for Type A and Type B bioretention systems. Specifically, this study identified design factors affecting the performance of four bioretention systems in reducing stormwater peak flow, runoff volume and pollutants.
  • In this research, two laboratory scale system was developed for Type A and Type B bioretention systems. Specifically, this study identified design factors affecting the performance of four bioretention systems in reducing stormwater peak flow, runoff volume and pollutants.

대상 데이터

  • Each experimental run was conducted during 120 min. The four bioretention systems were subjected to five inflow rates of 2, 3, 4, 5 and 6 L/min representing 55%, 60%, 65%, 70% and 75%, respectively of rainfall depth occurring in Cheonan city, South Korea. Experimental scenarios were demonstrated in Fig.

데이터처리

  • Lastly, pollutant mass reduction of the system was calculated by dividing the difference of the summation of influent and summation of effluent loading with the summation of influent loading, also known as summation of loads method. Results were statistically analyzed using SYSTAT 12 and Origin Pro 8 package software including analysis of variance (one-way ANOVA). Significant differences between parameters were accepted at 95% confidence level, signifying that probability (p) value was less than 0.
본문요약 정보가 도움이 되었나요?

참고문헌 (18)

  1. American Public Health Association (APHA), American Water Works Association(AWWA), and Water Environment Federation (WEF). (1992). Standard Methods for the Examination of Water and Wastewater (eighteenth edition), Greenberg, A. E., Clesceri, L. S., and Eaton, A. D. (Eds.), APHA, AWWA, WEF, Washington, DC. 

  2. Cho, S. J., Kang, M. J., Kwon, H., Lee, J. W., and Kim, S. D. (2013). Evaluation on the Effectiveness of Low Impact Development Practices in an Urban Area: Non-point Pollutant Removal Measures Using EPA-SWMM, Journal of Korean Society on Water Environment, 29(4), 466-475. [Korean Literature] 

  3. Davis, A. P., Shokouhian, M., Sharma, H., Minami, C., and Winogradoff, D. (2003). Water Quality Improvement through Bioretention: Lead, Copper, and Zinc Removal, Water Environment Research, 75(1), 73-82. 

  4. Endreny, T. and Collins, V. (2009). Implications of Biretention Basin Spatial Arrangements on Stormwater Recharge and Groundwater Mounding, Ecological Engineering, 35, 670-677. 

  5. Flores, P. E., Maniquiz-Redillas, M. C., Tobio, J. S., and Kim, L. H. (2015). Evaluation on the Hydrologic Effects After Applying an Infiltration Trench and a Tree Box Filter as Low Impact Development (LID) Techniques, Journal of Korean Society on Water Environment, 31(1), 12-18. 

  6. Geronimo, F. K. F., Maniquiz-Redillas, M. C., Tobio, J. A. S., and Kim, L. H. (2014). Treatment of Suspended Solids and Heavy Metals from Urban Stormwater Runoff by a Tree Box Filter, Water Science & Technology, 69(12), 2460-2467. 

  7. Kalra, T. P. (1998). Handbook of Reference Methods for Plant Analysis, Soil and Plant Analysis Council, Inc. 

  8. Kazemi, F., Beecham, S., and Gibbs, J. (2011). Streetscape Biodiversity and the Role of Bioretention Swales in an Australian Urban Environment, Landscape and Urban Planning, 101, 139-148. 

  9. Khan, U. T., Valeo, C., Chu, A., and Van Duin, B. (2012). Bioretention Cell Efficacy in Cold Climates: Part 1 - Hydrologic Performance, Canadian Journal of Civil Engineering, 39, 1210-1221. 

  10. Kim, M. H., Sung, C. Y., Li, M. H., and Chu, K. H. (2011). Bioretention for Stormwater Quality Improvement in Texas: Removal Effectiveness of Escherichia Coli, Separation and Purification Technology, 84, 120-124. 

  11. Kim, J. J., Kim, T. D., Choi, D. H., and Jeon, J. H. (2011). Design of Structural BMPs for Low Impact Development Application and Modelling its Effect on Reduction of Runoff and Nonpoint Source Pollution: Application of LIDMOD2, Journal of Korean Society on Water Environment, 27(5), 580-586. [Korean Literature] 

  12. Kluge, B., Markert, A., Facklam, M., Sommer, H., Kaiser, M., Pallasch, M., and Wessolek, G. (2016). Metal Accumulation and Hydraulic Performance of Bioretention Systems After Long-term Operation, Journal of Soils and Sediments, 8, 1-11. 

  13. Li, M. H., Swapp, M., Kim, M. H., Chu, K. H., and Sung, C. Y. (2014). Comparing Bioretention Design with and Without an Internal Water Storage Layer for Treating Highway Runoff, Water Environment Research, 86, 1-11. 

  14. Liu, J., Sample, D. J., Bell, C., and Guan, Y. (2014). Review and Research Needs of Bioretention Used for the treatment of Urban Stormwater, Water, 6, 1069-1099. 

  15. Mangangka, I., Liu, A., Egodawatta, P., and Goonetilleke, A. (2015). Performance Characterisation of a Stormwater Treatment Bioretention Basin, Journal of Environmental Management, 150, 173-178. 

  16. Maniquiz-Redillas, M. C. and Kim, L. H. (2016). Evaluation of the Capability of Low-impact Development Practices for the Removal of Heavy Metal from Urban Stormwater Runoff, Environmental Technology, 37(18), 2265-2272. 

  17. Thompson, A. M., Paul, A. C., and Balster, N. J. (2008). Physical and Hydraulic Properties of Engineered Soil Media for Bioretention Basins, American Society of Agricultural and Biological Engineers, 51(2), 499-514. 

  18. Trowsdale, S. A. and Simcock, R. (2011). Urban Stormwater Treatment Using Bioretention, Journal of Hydrology, 397, 167-174. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로