$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수학적 모델링에서 집단창의성 발현사례
Manifestation examples of group creativity in mathematical modeling 원문보기

Journal of the Korean Society of Mathematical Education. Series A. The Mathematical Education, v.57 no.4, 2018년, pp.371 - 391  

정혜윤 (서울대학교 대학원) ,  이경화 (서울대학교)

Abstract AI-Helper 아이콘AI-Helper

The purpose of this study is to analyze manifestation examples and effects of group creativity in mathematical modeling and to discuss teaching and learning methods for group creativity. The following two points were examined from the theoretical background. First, we examined the possibility of gro...

주제어

표/그림 (11)

질의응답

핵심어 질문 논문에서 추출한 답변
집단창의성의 개념들에서는 공통으로 무엇이 핵심이 되는가? 집단창의성의 개념은 연구자들에 따라 다양하게 정의 되지만, 집단창의성에 관한 선행연구(김부미, 2018; 김영채, 2007; 유경훈, 2015; Paulus, 2000; Woodman et al., 1993; Zhou & Luo, 2012)를 분석하면, 공통적으로 집단 구성원의 상호작용 속에서 개인이 할 수 있는 것보다 뛰어난 산출을 해내는 집단 수준의 창의적 시너지를 갖는것이 핵심이 됨을 알 수 있다. 이때, 집단 내 상호작용이란 서로의 정보를 교환하고 발전시켜 나가는 과정으로, 사회적 맥락에서의 검증과 구성원들의 합의를 포함한다 (Paulus, 2000; Paulus & Nijstad, 2003, pp.
English & Sriraman, Gravemeijer에 따르면, 수학적 모델링이란? 수학적 모델링은 실세계 현상에 대한 분석과 해석으로부터 출발하여 수학적 모델을 구성하고 이를 다시 실세계에 적용하는 과정(English & Sriraman, 2010;Gravemeijer, 2002)으로, 학생들의 수학적 사고력 신장과 탐구학습의 기회를 제공할 수 있는 수학교육의 한 방안으로서 그 중요성이 꾸준히 강조되고 있다(정혜윤, 이경 화, 백도현, 정진호, 임경석, 2018). 이에 따라, 국내외의 여러 수학교육 연구자들(김민경, 홍지연, 김혜원, 2010;Bliss & Libertini, 2016; Galbraith & Stillman, 2006;Lesh, Cramer, Doerr, Post, & Zawojewski, 2003) 역시 수학적 모델링 활동과 관련하여 그 의미와 과정, 그리고 역할 및 효과 측면에서 다면적인 논의를 진행해 왔다.
수학적 문제 해결 시 나타나는 집단창의성 발현과정으로서 상호작용의 상보, 긴장, 발생이라는 세 가지 상태는 각각 어떤 상호작용을 유도하는가? 이에, 최근 집단창의성 발현과정으로서 상호작용 과정에 대한 실제적 연구를 수행하려는 시도가 성지현, 이종희(2017a)에 의해 진행되었다. 이들은 수학적 문제 해결 시 나타나는 집단창의성 발현과정에서의 상호작용으로 상보, 긴장, 발생이라는 세 가지 상태에서의 상호작용을 제시하였는데, 이때 상보적 상태는 구성원의 다양한 사고를 수집하는 상호보완적 상호작용을, 긴장 상태는 사고의 불일치로 인한 갈등 기반 상호작용을, 발생 상태는 새로운 관계의 발견 혹은 연결이 나타나는 메타인지적 상호작용을 유도한다. 이들은 모두 구성원의 정보를 수집, 교환하고 합의해 나가는 과정으로, 집단창의성 발현에 기여하는 맥락을 좀 더 구체적으로 살펴보면 다음과 같다.
질의응답 정보가 도움이 되었나요?

참고문헌 (58)

  1. Ministry of Education. (2015). Mathematical curriculum. Seoul: Author. 

  2. Kim, M. K., Hong, J. Y., & Kim. E. K. (2009). Exploration of teaching method through analysis of cases of mathematical modeling in elementary mathematics. The Mathematical Education 48(4), 365-385. 

  3. Kim, M. K., Hong, J. Y., & Kim. H. W. (2010). A study on development of problem contexts for an application to mathematical modeling. The Mathematical Education 49(3), 313-328. 

  4. Kim, B. M. (2018). Characteristics of tasks for group creativity in mathematics learning related with mobile, on/off-line. Proceedings of the 52nd Conference on Mathematics Education 52, 159-161. 

  5. Kim, S. Y. (2017). An in-depth conceptual analysis of synergy in group collaborative learning. Journal of Educational Technology 33(1), 75-104. 

  6. Kim, S. H. & Kim, K. Y. (2004). Analysis on types and roles of reasoning used in the mathematical modeling process. School Mathematics 6(3), 283-299. 

  7. Kim, Y. C. (2007). Group creativity: How it could be effective?. The Journal of Thinking Development 3(1), 1-26. 

  8. Kim, H. J. & Seol, H. D. (2014). Mediating effects of integrative capability and knowledge sharing on the relationship between individual creativity and group creativity. Knowledge Management Research 15(4), 223-247. 

  9. Park, J. H. (2017). Fostering mathematical creativity by mathematical modeling. Journal of Educational Research in Mathematics 27(1), 69-88. 

  10. Park, J. H. & Lee, K. H. (2014). A study on meta-level learning through modeling activities. School Mathematics 16(3), 409-444. 

  11. Sung, J. H. & Lee, C. H. (2017a). A study on the manifestation process model development of group creativity among mathematically gifted students. Journal of Educational Research in Mathematics 27(3), 557-580. 

  12. Sung, J. H. & Lee, C. H. (2017b). An analysis on the products and process losses of group creativity among mathematically gifted students. Journal of Elementary Mathematics Educaion in Korea 21(3), 505-530. 

  13. Shin, E. J. & Lee, C. H. (2004). An analysis of the interaction of perceptive, cognitive, and metacognitive activities on the middle school students' modeling activity. School Mathematics 6(2), 153-179. 

  14. Woo, J. H., Chong, Y. O., Park, K. M., Lee, K. H., Kim, N. H., Na, G. S., Yim, J. H. (2014). Research methodology in mathematics education. Seoul: Kyungmoonsa. 

  15. Lew. K. H. (2015). A comparative study on effects of home and classroom environment on individual creativity and group creativity. The Journal of the Korean Society for the Gifted and Talented 14(1), 201-222. 

  16. Lee, K. H. (2016). Reanalysis of realistic mathematics education perspective in relation to cultivation of mathematical creativity. Journal of Educational Research in Mathematics 26(1), 47-62. 

  17. Lee, S. Y., Kim, C. J., Choe, S. U., Yoo, J. H., Park, H. J., Kang, E. H., Kim, H. B. (2012). Exploring the patterns of group model development about blood flow in the heart and reasoning process by small group interaction. Journal of the Korean Association for Science Education 32(5), 805-822. 

  18. Jung, H. Y., Lee, K. H., Baek, D. H., Jung, J. H., & Lim, K. S. (2018). Design for subject’s task based on the mathematical modeling perspective. School Mathematics 20(1), 149-169. 

  19. Cho, M. J. & Jin, S. U. (2016). A phenomenological study on group creativity emerging precess experiences of gifted students in elementary schools. The Journal of Creativity Education 16(2), 35-59. 

  20. Cho, M. K. & Kim, M. K. (2016). A study on peer interactions according to a teacher’s scaffolding in ill-structured mathematical problem solving. The Journal of Elementary Education, 29(4), 227-255. 

  21. Hwang, H. J. (2007). A study of understanding mathematical modelling. School Mathematics 9(1), 65-97. 

  22. Artzt, A. F. & Armour-Thomas, E. (1992). Development of a cognitive-metacognitive framework for protocol analysis of mathematical problem solving in small group. Cognition and Instruction, 9(2), 137-175. 

  23. Bliss, K. & Libertini, J. (2016). What is mathematical modeling? In Garfunkel, S., & Montgomery, M. (Eds.), Guidelines for Assessment & Instruction in Mathematical Modeling Education(GAIMME) (pp. 7-21). 

  24. BlmhOj, M. (2011). Modelling competency: Teaching, learning and assessing competencies - Overview. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.). Trends in teaching and learning of mathematical modelling (pp. 343-347). Dordrecht: Springer. 

  25. Blum, W. & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58. 

  26. Chan, C. M. E. (2008). The use of mathematical modeling tasks to develop creativity, In E. Veikova, & A. Andzans (Eds.), Promoting creativity for all students in mathematics education (pp. 207-216). Bulgaria: University of Rousse. 

  27. Chamberlin, S. A. & Moon, S. M. (2005). Model-eliciting activities as a tool develop and identify creatively gifted mathematicians. The Journal of Gifted Education, 17(1), 37-47. 

  28. Creswell, J. W. (2014). 연구방법 : 질적, 양적 혼합적 연구의 설계 (정종진, 김영숙, 성용구, 성장환, 류성림, 박판우, 유승희, 임남숙, 임청환, 허재복 역), 서울: 시그마프레스. (원저 2013년 출판) 

  29. Doerr, H. M. (2007). What knowledge do teachers need for teaching mathematics through applications and modelling?. In W. Blum, P. L. Galbraith, H-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 69-78). New York: Springer. 

  30. English, L. D. (2006). Mathematical modeling in the primary school. Educational Studies in Mathematics, 63(3), 303-323. 

  31. English, L. D. & Sriraman, B. (2010). Problem solving for the 21st century. In B. Sriraman, & L. English (Eds.), Theories of Mathematics Education (pp. 263-301). Berlin: Springer. 

  32. Galbraith, P. & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM, 38(2), 143-162. 

  33. Gravemeijer, K. (2002). Preamble: From models to modeling. In K. Gravemijer, R. Lehrer, B. Oers, & L. Verschaffel (Eds.), Symbolizing, Modeling and Tool Use in Mathematics Education (pp. 7-22). 

  34. Guest, G., MacQueen, K. M., & Namey, E. E. (2011). Applied theomatic analysis. Thousand Oaks, CA : Sage. 

  35. James, M. A. (2015). Managing the classroom for creativity. Creative Education, 6(10), 1032-1043. 

  36. Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines, P. Galbraith, W. Blum, & S. Khan, (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 110-119). Chichester: Horwood Publishing. 

  37. Kurtzberg, T. R. & Amabile, T. M. (2001). From Guilford to creative synergy: Opening the black box of team-level creativity. Creativity Research Journal, 13(3-4), 285-294. 

  38. Lesh, R., Cramer, K., Doerr, H., Post, T., & Zawojewski, J. (2003). Model development sequences. In R. Lesh, & H. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics teaching, learning, and problem solving (pp. 35-58). Mahwah, NJ: Lawrence Erlbaum. 

  39. Mercer, N. (1995). The guided construction of knowledge talk amongst teachers and learners. Neil Mercer. [Electronic Resource]. 

  40. Milliken, F. J., Bartel, C. A., & Kurtzberg, T. R. (2003). Diversity and creativity in work group: A dynamic perspective on the affective and cognitive processes that link diversity and performance. In P. B. Paulus, & B. A. Nijstad, (Eds.), Group creativity: Innovation through collaboration (pp. 32-62). Oxford University Press. 

  41. Nemeth, C. J., Brown, K. S., & Rogers, J. (2001). Devil’s advocate versus authentic dissent: Stimulating quantity and quality. European Journal of Social Psychology, 31, 707-720. 

  42. Nemeth, C. J. & Nemeth-Brown, (2003). Better than individual? The potential benefit of dissent and diversity for group creativity. In P. B. Paulus, & B. A. Nijstad, (Eds.), Group creativity: Innovation through collaboration (pp. 63-84). Oxford University Press. 

  43. Nijstad, B. A., Dieha, M., & Stroebe, W. (2003). Cognitive stimulation and interference in idea-generating groups. In P. B. Paulus, & B. A. Nijstad, (Eds.), Group creativity: Innovation through collaboration (pp. 137-159). Oxford University Press. 

  44. Nunez-Oveido, M. C., Clement, J., & Rea-Ramirez, M. A. (2008). Developing complex mental modes in biology through model evolution. In J. J. Clement, & M. A. Rea-Ramirez (Eds.), Model based learning and instruction in science (pp. 173-193). Netherlands: Springer. 

  45. Pakeltiene, R. & Ragauskaite, A. (2017). Creative synergy as a potential factor for the development of social innovations. Research for Rural Development, 2, 174-181. 

  46. Palsdottir, G. & Sriraman, B. (2017). Teacher's views on modeling as a creative mathematical activity. In R. Leikin, & B. Sriraman, (Eds.), Creativity and giftedness (pp. 47-55). Switzerland: Springer. 

  47. Paulus, P. B. (2000). Groups, teams, and creativity: The creative potential of idea-generating groups. Applied Psychology: An International Review, 49(2), 237-262. 

  48. Paulus, P. B. & Brown, V. R. (2003). Enhancing ideatioanl creativity in Groups. In P. B. Paulus, & B. A. Nijstad, (Eds.), Group creativity: Innovation through collaboration (pp. 110-136). Oxford University Press. 

  49. Paulus, P. B. & Nijstad, B. A. (2003). Group creativiry. In P. B. Paulus, & B. A. Nijstad, (Eds.), Group creativity: Innovation through collaboration (pp. 3-11). Oxford University Press. 

  50. Sawyer, R. K. (2012). Group creativity. In R. K. Sawyer (Ed), Explaining creativity: The science of human innovation account. (pp. 231-248). New York : Oxford University Press. 

  51. Sheffield, L. J. (2006). Developing mathematical promise and creativity. Research in Mathematics Education, 10(1), 1-11. 

  52. Sriraman, B. (2005). Are mathematical giftedness and mathematical creativity synonyms? A theoretical analysis of constructs. Journal of Secondary Gifted Education, 17(1), 20-36. 

  53. Suh, J. M., Matson, K., & Seshaiyer, P. (2017). Engaging elementary students in the creative process of mathematizing their world through mathematical modeling. Education Sciences, 7(2), 62. 

  54. Verschaffel, L., Greer, B., & De Corte, E. (2002). Everyday knowledge and mathematical modeling of school word problems. In K. Gravemeijer, R. Lehrer, B. van Oers, & L. Verschaffel (Eds.), Symbolizing, modeling and tool use in mathematics education (pp. 257-276). Dordrecht: Springer. 

  55. Vorholter, K. (2017). Conceptualization and measuring of metacognitive modelling competencies: Empirical verification of theoretical assumption. ZDM, 50(1-2), 343-354. 

  56. Vorholter, K., Kruger, A., & Wendt, L. (2017). Metacognitive modelling competencies in small groups. In T. Dooley, & G. Gueudet (Eds.), Proceedings of the tenth congress of the european society for research in mathematics education. Dublin, Ireland: DCU Institute of Education and ERME. 

  57. Woodman, R. W., Sawyer, J. E., & Griffin, R. W. (1993). Toward a theory of organizational creativity. The Academy of Management Review, 18(2), 293-321. 

  58. Zhou, C. & Luo, L. (2012). Group creativity in learning context: Understanding in a social-cultural framework and methodology. Creative Education, 3(4), 392-399. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로