$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

홍삼 사포닌 분획의 Nrf2 Keap1 신호전달체계 조절을 통한 지방축적 및 활성산소종 억제효과
Red ginseng-derived saponin fraction inhibits lipid accumulation and reactive oxygen species production by activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway 원문보기

한국식품과학회지 = Korean journal of food science and technology, v.50 no.6, 2018년, pp.688 - 696  

김채영 (고려대학교 보건과학대 의생명융합과학과) ,  강보빈 (고려대학교 보건과학대 의생명융합과학과) ,  황지수 (고려대학교 보건과학대 의생명융합과학과) ,  최현선 (서울여자대학교 식품공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 홍삼 사포닌 분획(SF)으로부터 진세노사이드의 조성을 분석하고 지방세포의 분화 및 지방축적에 대한 효과를 측정하였다. SF는 지방분화인자인 $PPAR{\gamma}$, $C/EBP{\alpha}$의 단백질 양을 억제함으로써 지방분화 동안 효과적으로 지방축적을 억제하였으며 주로 지방분화 초기시점부터 지방분화 초기인자인 $C/EBP{\beta}$, KLF2의 조절작용을 통해 지방축적을 억제하는 것으로 관찰되었다. SF는 또한 지방분화 동안 생성되는 ROS의 생성을 효과적으로 억제하였는데 이는 SF가 산화방지 시스템인 Nrf2/Keap1 경로를 활성화하기 때문으로 판단되며 특히 Nrf2의 핵 내로의 진입을 활성화 함으로써 Nrf2의 타겟 산화방지 분자들인 HO-1, NQO1의 발현을 촉진하였다. 이는 지방분화 동안 SF의 지방축적 억제 효과가 Nrf2의 활성화와 밀접하게 관련이 있음을 보여준다.

Abstract AI-Helper 아이콘AI-Helper

This study aimed to investigate the effects of red ginseng-derived saponin fraction (SF) on lipid accumulation, reactive oxygen species (ROS) production, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) signaling during adipocyte differentiation. SF ...

주제어

표/그림 (9)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 홍삼 사포닌 분획(SF)으로부터 진세노사이드의 조성을 분석하고 지방세포의 분화 및 지방축적에 대한 효과를 측정하였다. SF는 지방분화인자인 PPARγ, C/EBPα의 단백질 양을 억제함으로써 지방분화 동안 효과적으로 지방축적을 억제하였으며 주로 지방분화 초기시점부터 지방분화 초기인자인 C/EBPβ, KLF2의 조절작용을 통해 지방축적을 억제하는 것으로 관찰되었다.
  • 또한, 홍삼 유래 항비만에 대한 연구도 종종 보고되고 있지만 홍삼사포닌 분획의 지방분화 및 지방축적억제효과와 Nrf2/Keap1 신호전달체계와의 관계에 대한 연구는 미비하다. 본 연구에서는 홍삼 유래 사포닌 분획의 지방축적에 대한 효과가 ROS조절 및 Nrf2/Keap1 신호전달체계와 밀접한 관련이 있음을 보여준다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
인삼의 정의? 인삼은 두릅나뭇과(Araliaceae), 인삼속(Panax) 다년생 식물의 뿌리를 말하며 민간 또는 한방 약초로 오랫동안 이용되어왔고 여러 종류의 인삼 중에서 한국의 인삼(Panax ginseng C. A.
지방분화 기간 동안 지방의 축적이 동반하는 ROS의 생성 특징? 지방분화 기간 동안 지방의 축적은 과도한 ROS의 생성이 동반되는 것으로 알려져 있으며(Furukawa 등, 2017; Lee 등, 2009). 이러한 ROS의 생성은 지방분화의 초기에 세포의 클론 확장 유사분열(mitotic clonal expansion)을 가속화함으로써 분화를 촉진하는 것으로 보고되고 있다(Lee 등, 2009). 또한 비만 및 비만 관련 질병들에서 ROS에 의한 산화스트레스가 항진되어 있는 것으로 알려지고 있다(Furukawa 등, 2017).
홍삼의 효과? 특히 높은 온도와 증기의 가공과정을 거친 인삼을 홍삼이라 하며 이때 진세노사이드의 조성과 함량이 가공 전보다 더 우수한 것으로 알려져 있다(Nam, 2005). 홍삼은 세포와 동물실험에서 다양한 생리활성을 나타내는 것으로 보고되고 있는데 면역시스템을 활성화하며, 심혈관질환을 예방하고, 중추신경계를 보호하는 기능은 물론 항암, 항당뇨, 산화방지 등의 효과를 나타내는 것으로 알려져 있다(Keum 등, 2000; Kim 등, 2004; Kim 등, 2012; Konno와 Hikino, 1987; Yoon과 Joo, 1993). 이러한 홍삼의 생리활성들은 주로 홍삼에서 유래하는 사포닌 성분에 의한 것으로 보고되고 있다(Attele 등, 1995).
질의응답 정보가 도움이 되었나요?

참고문헌 (38)

  1. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685-1693 (1995) 

  2. Chang H. Effect of processing methods on the saponin contents of Panax ginseng leaf-tea. J. Food Sci. Nut.16: 46-53 (2003) 

  3. Chang YS, Chang YH, Sung JH. The effect of ginseng and caffeine products on the antioxidative activities of mouse kidney. J. Ginseng Res. 30: 15-21 (2006) 

  4. Chen HH, Chen YT, Huang YW, Tsai HJ, Kuo CC. 4-Ketopinoresinol, a novel naturally occurring ARE activator, induces the Nrf2/HO-1 axis and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling. Free Radic. Biol. Med. 52: 1054-1066 (2012) 

  5. Choi HS, Jeon HJ, Lee OH, Lee BY. Indole-3-carbinol, a vegetable phytochemical, inhibits adipogenesis by regulating cell cycle and $AMPK{\alpha}$ signaling. Biochimie. 104: 127-136 (2014) 

  6. Choi KM, Lee YS, Sin DM, Lee S, Lee MK, Lee YM, Hong JT, Yun YP, Yoo HS. Sulforaphane inhibits mitotic clonal expansion during adipogenesis through cell cycle arrest. Obesity. 20: 1365-1371 (2012) 

  7. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114: 1752-1761 (2017) 

  8. Gaikwad A, Long DJ, Stringer JL, Jaiswal AK. In Vivo Role of NAD (P) H: quinone oxidoreductase1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue. J. Biol. Chem. 276: 22559-22564 (2001) 

  9. Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease: where are we now?. J. Lab.Clin. Med. 119: 598-620 (1992) 

  10. He HJ, Wang GY, Gao Y, Ling WH, Yu ZW, Jin TR. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J. Diabetes 3: 94-104 (2012) 

  11. Kersten S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Reports. 2: 282-286 (2001) 

  12. Keum YS, Park KK, Lee JM, Chun KS, Park JH, Lee SK, Kwon HJ, Surh YJ. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Letters. 150: 41-48 (2000) 

  13. Kim DH, Kwak KH, Lee KJ, Kim SJ, Shin YC, Chun BG, Shin, KH. Effects of Korea red ginseng total saponin on repeated unpredictable stress-induced changes of proliferation of neural progenitor cells and BDNF mRNA expression in adult rat hippocampus. J. Ginseng Res. 28: 94-103 (2004). 

  14. Kim JH, Kang S, Jung YN, Choi H-S. Cholecalciferol inhibits lipid accumulation by regulating early adipogenesis in cultured adipocytes and zebrafish. Biochem. Biophys. Res. Commun. 469: 646-653 (2016) 

  15. Kim JY, Park JY, Kang HJ, Kim OY, Lee JH. Beneficial effects of Korean red ginseng on lymphocyte DNA damage, antioxidant enzyme activity, and LDL oxidation in healthy participants: a randomized, double-blind, placebo-controlled trial. Nutr. J.11: 47 (2012) 

  16. Konno C, Hikino H. Isolation and hypoglycemic activity of panaxans M, N, O and P, glycans of Panax ginseng roots. Int. J. Crude Drug Res. 25: 53-56 (1987) 

  17. Lee H, Lee YJ, Choi H, Ko EH, Kim JW. Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J. Biol. Chem. 284: 10601-10609 (2009) 

  18. Lee JW, Do JH. Antioxidative activity of ethanol extraction fraction from the Korean red tail ginseng. Kor. J. Food Sci. Technol. 33: 497-500 (2001). 

  19. Lee M, Kim I, Kim C, Kim Y. Effects of ginsenoside Rg3 on adipocyte fatty acid binding protein mRNA expression and glycerol-3-phosphate dehydrogenase activity during adipocytes differentiation. Kor. J. Lipidol. 21: 67-75 (2011) 

  20. Liu H, Wang J, Liu M, Zhao H, Yaqoob S, Zheng M, Cai D, Liu J. Antiobesity effects of ginsenoside Rg1 on 3T3-L1 preadipocytes and high fat diet-induced obese mice mediated by AMPK. Nutrients 10: 830-844 (2018) 

  21. Lowe CE, O'Rahilly S, Rochford JJ. Adipogenesis at a glance. J. Cell Sci. 124: 2681-2686 (2011) 

  22. Nam KY. The comparative understanding between red ginseng and white ginsengs, processed ginsengs (Panax ginseng CA Meyer). J. Ginseng Res. 29: 1-18 (2005) 

  23. Oakley FD, Abbott D, Li Q, Engelhardt JF. Signaling components of redox active endosomes: the redoxosomes. Antioxid. Redox Signal. 11: 1313-1333 (2009) 

  24. Panchal SK, Poudyal H, Brown L. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. J. Nutr. 142: 1026-1032 (2012) 

  25. Pi J, Leung L, Xue P, Wang W, Hou Y, Liu D,Yehuda-Shnaidman E, Lee, C, Lau J, Kurtz T W, Chan JY. Deficiency in the nuclear factor E2-related factor 2 transcription factor results in impaired adipogenesis and protects against diet-induced obesity. J. Biol. Chem. 285: 9292-9300 (2010) 

  26. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. 14: 1293-1307 (2000) 

  27. Shin S, Wakabayashi N, Misra V, Biswal S, Lee GH, Agoston ES, Yamamoto M, Kensler TW. NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol. Cell. Biol. 27: 7188-7197 (2007) 

  28. Spiegelman BM, Choy L, Hotamisligil GS, Graves RA, Tontonoz P. Regulation of adipocyte gene expression in differentiation and syndromes of obesity/diabetes. J. Biol. Chem. 268: 6823-6826 (1993) 

  29. Suh HJ, Cho SY, Kim EY, Choi HS. Blockade of lipid accumulation by silibinin in adipocytes and zebrafish. Chem. Biol. Interact. 227: 53-62 (2015) 

  30. Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells. 16: 123-140 (2011) 

  31. Tang W, Yan J, Wang T, Xia X, Zhuang X, Hong K, Li R, Liu P, Jiang H, Qiao J. Up-regulation of heme oxygenase-1 expression modulates reactive oxygen species level during the cryopreservation of human seminiferous tubules. Fertil. Steril. 102: 974-980 (2014) 

  32. Wang L, Chen Y, Sternberg P, Cai J. Essential roles of the PI3 kinase/Akt pathway in regulating Nrf2-dependent antioxidant functions in the RPE. Invest. Ophthalmol. Vis. Sci. 49: 1671-1678 (2008) 

  33. Wu Y, Huang XF, Bell C, Yu Y. Ginsenoside Rb1 improves leptin sensitivity in the prefrontal cortex in obese mice. CNS Neurosci. Ther. 24: 98-107 (2018) 

  34. Yoon S, Joo C. Study on the preventive effect of ginsenosides against hypercholesterolemia and its mechanism. Kor. J. Ginseng Sci. 17: 1-12 (1993) 

  35. Yuan Q, Jiang YW, Ma TT, Fang QH, Pan L. Attenuating effect of Ginsenoside Rb1 on LPS-induced lung injury in rats. J. Inflammation. 11: 40 (2014) 

  36. Zhang L, Zhang L, Wang X, Si H. Anti-adipogenic effects and mechanisms of ginsenoside Rg3 in pre-adipocytes and obese mice. Front. Pharmacol. 8: 113 (2017) 

  37. Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol.100: 30-47 (2013) 

  38. Zhong Y, Liu T, Lai W, Tan Y, Tian D, Guo Z. Heme oxygenase-1-mediated reactive oxygen species reduction is involved in the inhibitory effect of curcumin on lipopolysaccharide-induced monocyte chemoattractant protein-1 production in RAW264.7 macrophages. Molecular Med. Reports. 7: 242-246 (2013) 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로