$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 비진공 방법에 의한 CIGS/CZTS계 박막 태양전지 제조
Fabrication of CIGS/CZTS Thin Films Solar Cells by Non-vacuum Process 원문보기

한국재료학회지 = Korean journal of materials research, v.28 no.12, 2018년, pp.748 - 757  

유다영 (부산대학교 나노융합기술학과(대학원)) ,  이동윤 (부산대학교 나노융합기술학과(대학원))

Abstract AI-Helper 아이콘AI-Helper

Inorganic semiconductor compounds, e.g., CIGS and CZTS, are promising materials for thin film solar cells because of their high light absorption coefficient and stability. Research on thin film solar cells using this compound has made remarkable progress in the last two decades. Vacuum-based process...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 현재까지 2세대 박막 태양전지에 대한 리뷰 논문들은 많이 있으나 비진공 방법에 의한 CIGS계 및 CZTS계 박막 태양전지 제조에 대한 리뷰 논문은 상대적으로 적다고 판단되어 이에 대해 여러 문헌을 살펴보고 본 연구진이 진행한 전기화학적 방법에 의한 CIGS계 광흡수층 제조 및 후속 공정에 대한 연구도 소개하고자 한다. 또한, 이를 바탕으로 발전된 화합물 반도체 박막 태양전지의 연구 방향에 대해서도 기술해 보고자 한다.
  • 현재까지 2세대 박막 태양전지에 대한 리뷰 논문들은 많이 있으나 비진공 방법에 의한 CIGS계 및 CZTS계 박막 태양전지 제조에 대한 리뷰 논문은 상대적으로 적다고 판단되어 이에 대해 여러 문헌을 살펴보고 본 연구진이 진행한 전기화학적 방법에 의한 CIGS계 광흡수층 제조 및 후속 공정에 대한 연구도 소개하고자 한다. 또한, 이를 바탕으로 발전된 화합물 반도체 박막 태양전지의 연구 방향에 대해서도 기술해 보고자 한다.
  • 본 연구진은 2012년도부터 태양전지 구조 중 광흡수층을 전기도금을 이용하여 형성하는 연구를 진행해왔다. 전기화학적 방법을 기반으로 여러 가지 조건을 변화시킴으로써 태양전지 셀에 직접 적용 가능한 CIGS 광흡수층을 제조하는데 성공하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
비진공 기반 방법의 장단점은? 진공기반 방법에는 열기상 증착법(thermal evaporation), 스퍼터링(sputtering) 그리고 화학 기상 증착법(chemical vapor deposition)이 있으며 비진공 기반 방법에는 전기화학적 적층법(electrochemical deposition),6-8)화학 용액 성장법(chemical deposition),9,10) 졸겔법(sol-gelmethod), 분무열분해법(spray pyrolysis),11,12) 그리고 스크린 프린팅(screen printing)13) 등이 있다. 앞서 언급한 바와 같이 비진공 기반 방법의 경우 진공장비를 사용하지 않아 제조 단가를 낮출 수 있으며 대면적화와 대량생산이 가능하다는 장점을 가지고 있다. 그러나, 일반적으로 비진공 기반 방법에 의해 제조한 박막 태양전지의 경우, 진공 기반 방법으로 제조한 박막 태양전지에 비해 현재까지는 낮은 광전변환 효율을 나타낸다는 단점이 있다. 이는 비진공 기반 공정 과정 중에 발생할 수 있는 산화물, 잔여 유기물 등에 의해 전자의 생성 및 흐름에 방해를 받는 것이 가장 큰 원인으로 지적되고 있는데14) 최근 들어 이러한 단점을 극복하기 위한 연구에 많은 진전이 이루어졌으며 괄목할 만한 결과들이 발표되고 있다.
박막 태양전지를 제조하는 방법 중 진공기반 방법의 종류는? 박막 태양전지를 제조하는 방법은 크게 건식법과 습식법 또는 진공기반 방법과 비진공 기반 방법으로 나눌 수 있다. 진공기반 방법에는 열기상 증착법(thermal evaporation), 스퍼터링(sputtering) 그리고 화학 기상 증착법(chemical vapor deposition)이 있으며 비진공 기반 방법에는 전기화학적 적층법(electrochemical deposition),6-8)화학 용액 성장법(chemical deposition),9,10) 졸겔법(sol-gelmethod), 분무열분해법(spray pyrolysis),11,12) 그리고 스크린 프린팅(screen printing)13) 등이 있다. 앞서 언급한 바와 같이 비진공 기반 방법의 경우 진공장비를 사용하지 않아 제조 단가를 낮출 수 있으며 대면적화와 대량생산이 가능하다는 장점을 가지고 있다.
CIGS계 태양전지가 효과적으로 빛 흡수가 가능한 이유는? CIGS는 기본적으로 칼코피라이트(chalcopyrite) 구조이며 직접천이형 반도체이다. 잘 알려진 바와 같이 1 × 105cm−1의 높은 광흡수계수를 가지고 있기 때문에 1~2 µm의 얇은 두께의 광흡수층 만으로도 빛을 효과적으로 흡수할 수 있기 때문에 박막형 태양전지로 활용이 가능하여 지금에 이르고 있다. 또한, 열적 안정성과 내방사선 효과가 뛰어나 우주에서의 활용을 목적으로도 많은 연구가 진행되고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (80)

  1. Kaelin, M., Rudmann, D., Tiwari, A.N.. Low cost processing of CIGS thin film solar cells. Solar energy, vol.77, no.6, 749-756.

  2. Ren, T., Yu, R., Zhong, M., Shi, J., Li, C.. Microstructure evolution of CuInSe2 thin films prepared by single-bath electrodeposition. Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, vol.95, no.2, 510-520.

  3. Choi, Changsoon, Lee, HyunJu, Cha, Hee-Ryoung, Gwak, Jihye, Yun, Jae Ho, Kim, Jong-Man, Kim, Yangdo, Lee, Dongyun. Fabrication of CuIn(Ga)Se2Thin Films by Electrochemical Deposition with Additive. Journal of the Electrochemical Society : JES, vol.159, no.1, E1-E4.

  4. Lee, H., Lee, W., Kim, J.Y., Ko, M.J., Kim, K., Seo, K., Lee, D.K., Kim, H.. Highly dense and crystalline CuInSe2 thin films prepared by single bath electrochemical deposition. Electrochimica acta, vol.87, 450-456.

  5. Mane, R.S., Lokhande, C.D.. Chemical deposition method for metal chalcogenide thin films. Materials chemistry and physics, vol.65, no.1, 1-31.

  6. Hankare, P.P., Rathod, K.C., Chate, P.A., Garadkar, K.M., Sathe, D.J., Mulla, I.S.. Chemical deposition of CuInSe2 thin films by photoelectrochemical applications. Journal of alloys and compounds, vol.511, no.1, 50-53.

  7. Deshmukh, L.P., Suryawanshi, R.V., Masumdar, E.U., Sharon, M.. Cu1-xInxSe2 thin films: Deposition by spray pyrolysis and characteristics. Solar energy, vol.86, no.6, 1910-1919.

  8. Yoon, Hyun, Woo, Ji Hoon, Joshi, Bhavana, Ra, Young Min, Yoon, Sam S., Kim, Ho Young, Ahn, Se Jin, Yun, Jae Ho, Gwak, Jihye, Yoon, KyungHoon, James, Scott C.. CuInSe2(CIS) Thin Film Solar Cells by Electrostatic Spray Deposition. Journal of the Electrochemical Society : JES, vol.159, no.4, H444-H449.

  9. Kuo, Hsiu-Po, Tsai, Hung-An, Huang, An-Ni, Pan, Wen-Chueh. CIGS absorber preparation by non-vacuum particle-based screen printing and RTA densification. Applied energy, vol.164, 1003-1011.

  10. Hahn, Harry, Frank, Günter, Klingler, Wilhelm, Meyer, Anne‐Dorothee, Störger, Georg. Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur. Zeitschrift für anorganische und allgemeine Chemie, vol.271, no.3, 153-170.

  11. 정채환. 태양에너지를 이용한 차세대 저가·고효율 태양전지 기술. 진공 이야기 = Vacuum magazine, vol.3, no.2, 4-10.

  12. Fernandez, A.M., Bhattacharya, R.N.. Electrodeposition of CuIn1-xGaxSe2 precursor films: optimization of film composition and morphology. Thin solid films, vol.474, no.1, 10-13.

  13. Bhattacharya, Raghu N.. Electrodeposited Two-Layer Cu-In-Ga-Se/In-Se Thin Films. Journal of the Electrochemical Society : JES, vol.157, no.7, D406-.

  14. Zhou, D., Zhu, H., Liang, X., Zhang, C., Li, Z., Xu, Y., Chen, J., Zhang, L., Mai, Y.. Sputtered molybdenum thin films and the application in CIGS solar cells. Applied surface science, vol.362, 202-209.

  15. ZhangThese authors contributed equally to this work., Ting, Yang, Yixing, Liu, Deang, Tse, Shing Chi, Cao, Weiran, Feng, Zongbao, Chen, Song, Qian, Lei. High efficiency solution-processed thin-film Cu(In,Ga)(Se,S)2 solar cells. Energy & environmental science, vol.9, no.12, 3674-3681.

  16. McLeod, Steven M., Hages, Charles J., Carter, Nathaniel J., Agrawal, Rakesh. Synthesis and characterization of 15% efficient CIGSSe solar cells from nanoparticle inks. Progress in photovoltaics, vol.23, no.11, 1550-1556.

  17. Nakazawa, Kentaro Ito. Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films. Japanese journal of applied physics. Part 1, Regular papers & short notes, vol.27, no.11, 2094-.

  18. Horowitz, K.A.W., Fu, R., Woodhouse, M.. An analysis of glass-glass CIGS manufacturing costs. Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, vol.154, 1-10.

  19. Zegadi, A., Slifkin, M. A., Djamin, M., Hill, A. E., Tomlinson, R. D.. A Photoacoustic Study of CuInxGa1−xSe2 Alloys. Physica status solidi. A, Applied research, vol.133, no.2, 533-540.

  20. Chiril?, Adrian, Buecheler, Stephan, Pianezzi, Fabian, Bloesch, Patrick, Gretener, Christina, Uhl, Alexander R., Fella, Carolin, Kranz, Lukas, Perrenoud, Julian, Seyrling, Sieghard, Verma, Rajneesh, Nishiwaki, Shiro, Romanyuk, Yaroslav E., Bilger, Gerhard, Tiwari, Ayodhya N.. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nature materials, vol.10, no.11, 857-861.

  21. Baruch, P., De Vos, A., Landsberg, P.T., Parrott, J.E.. On some thermodynamic aspects of photovoltaic solar energy conversion. Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, vol.36, no.2, 201-222.

  22. Yoon, Hyukjoo, Park, Kangju, Park, Jieun, Kim, Kyoung-Bo, Lee, Junggoo, Kim, Yangdo, Lee, Dongyun. Compensation for Cracks Formed on an Electrochemically Deposited CuInSe2 Absorption Layer. Journal of electronic materials, vol.44, no.12, 4779-4786.

  23. Park, Kangju, Park, Jieun, Park, Sungkyu, Lee, Dajeong, Yoo, Dayoung, Shin, Sangmin, Gwak, Jihye, Kim, Yangdo, Lee, Dongyun. Fabrication of Cd-free CuInSe2 solar cells using wet processes. Journal of materials science, vol.52, no.23, 13533-13540.

  24. 5), Plateau CISEL, 6 Quai Watier-BP 49, 78401 Chatou cedex, France, Laboratoire Cellules Solaires en Couches Minces (EDF-CNRS/ENSCP/UMR7575), Plateau CISEL, 6 Quai Watier-BP 49, 78401 Chatou cedex, France, Laboratoire Cellules Solaires en Couches Minces (EDF-CNRS/ENSCP/UMR7575), Plateau CISEL, 6 Quai Watier-BP 49, 78401 Chatou cedex, France, Saint-Gobain Recherche, Aubervilliers, France, Laboratoire Cellules Solaires en Couches Minces (EDF-CNRS/ENSCP/UMR7575), Plateau CISEL, 6 Quai Watier-BP 49, 78401 Chatou cedex, France. Chalcopyrite thin film solar cells by electrodeposition. Solar energy, vol.77, no.6, 725-737.

  25. Fernandez, A.M., Bhattacharya, R.N.. Electrodeposition of CuIn1-xGaxSe2 precursor films: optimization of film composition and morphology. Thin solid films, vol.474, no.1, 10-13.

  26. Bamiduro, O., Chennamadhava, G., Mundle, R., Konda, R., Robinson, B., Bahoura, M., Pradhan, A.K.. Synthesis and characterization of one-step electrodeposited CuIn(1-x)GaxSe2/Mo/glass films at atmospheric conditions. Solar energy, vol.85, no.3, 545-552.

  27. Su, C.Y., Ho, W.H., Lin, H.C., Nieh, C.Y., Liang, S.C.. The effects of the morphology on the CIGS thin films prepared by CuInGa single precursor. Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, vol.95, no.1, 261-263.

  28. Lai, Y., Liu, F., Zhang, Z., Liu, J., Li, Y., Kuang, S., Li, J., Liu, Y.. Cyclic voltammetry study of electrodeposition of Cu(In,Ga)Se2 thin films. Electrochimica acta, vol.54, no.11, 3004-3010.

  29. Kaupmees, L., Altosaar, M., Volubujeva, O., Mellikov, E.. Study of composition reproducibility of electrochemically co-deposited CuInSe2 films onto ITO. Thin solid films, vol.515, no.15, 5891-5894.

  30. Fu, Yen-Pei, You, Rui-Wei, Lew, Kar-Kit. Electrochemical Properties of Solid-Liquid Interface of CuIn[sub 1−x]Ga[sub x]Se[sub 2] Prepared by Electrodeposition with Various Gallium Concentrations. Journal of the Electrochemical Society : JES, vol.156, no.9, E133-.

  31. Lee, Hyunju, Yoon, Hyukjoo, Ji, Changwook, Lee, Dongyun, Lee, Jae-Ho, Yun, Jae-Ho, Kim, Yangdo. Fabrication of CIGS Films by Electrodeposition Method for Photovoltaic Cells. Journal of electronic materials, vol.41, no.12, 3375-3381.

  32. Hibberd, C. J., Chassaing, E., Liu, W., Mitzi, D. B., Lincot, D., Tiwari, A. N.. Non‐vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers. Progress in photovoltaics, vol.18, no.6, 434-452.

  33. Pamplin, Brian, Feigelson, R.S.. Spray pyrolysis of CuInSe2 and related ternary semiconducting compounds. Thin solid films, vol.60, no.2, 141-146.

  34. Kim, Kyunhwan, Eo, Young-Joo, Cho, Ara, Gwak, Jihye, Yun, Jae Ho, Shin, Keeshik, Ahn, Seoung Kyu, Park, Sang Hyun, Yoon, Kyunghoon, Ahn, SeJin. Role of chelate complexes in densification of CuInSe2 (CIS) thin film prepared from amorphous Cu–In–Se nanoparticle precursors. Journal of materials chemistry, vol.22, no.17, 8444-8448.

  35. Ahn, SeJin, Choi, Yoo Jeong, Kim, Kyunhwan, Eo, Young‐Joo, Cho, Ara, Gwak, Jihye, Yun, Jae Ho, Shin, Keeshik, Ahn, Seoung Kyu, Yoon, Kyunghoon. Amorphous Cu-In-S Nanoparticles as Precursors for CuInSe2 Thin‐Film Solar Cells with a High Efficiency. ChemSusChem, vol.6, no.7, 1282-1287.

  36. Ahn, SeJin, Rehan, Shanza, Moon, Dong Gwon, Eo, Young-Joo, Ahn, SeungKyu, Yun, Jae Ho, Cho, Ara, Gwak, Jihye. An amorphous Cu-In-S nanoparticle-based precursor ink with improved atom economy for CuInSe2 solar cells with 10.85% efficiency. Green chemistry : an international journal and green chemistry resource : GC, vol.19, no.5, 1268-1277.

  37. Tomar, M.S.. A ZnO/p-CuInSe2 thin film solar cell prepared entirely by spray pyrolysis. Thin solid films, vol.90, no.4, 419-423.

  38. Abernathy, Cammy R., Bates Jr., Clayton W., Anani, Anaba A., Haba, Belgacem, Smestad, Greg. Production of single phase chalcopyrite CuInSe2 by spray pyrolysis. Applied physics letters, vol.45, no.8, 890-892.

  39. Kaelin, M., Zogg, H., Tiwari, A.N., Wilhelm, O., Pratsinis, S.E., Meyer, T., Meyer, A.. Electrosprayed and selenized Cu/In metal particle films. Thin solid films, vol.457, no.2, 391-396.

  40. Merdes, S., Bechiri, L., Hadjoub, Z., Sano, M., Ando, S.. Influence of selenization temperature on the properties of CuInSe2 thin films prepared by spin coating technique. Physica status solidi. PSS. C, Current topics in solid state physics, vol.3, no.8, 2535-2538.

  41. Hirpo, Wakgari, Dhingra, Sandeep, Sutorik, Anthony C., Kanatzidis, Mercouri G.. Synthesis of mixed copper-indium chalcogenolates. Single-source precursors for the photovoltaic materials CuInQ2 (Q = S, Se). Journal of the American Chemical Society, vol.115, no.4, 1597-1599.

  42. Kluge, Oliver, Plante, Ilan Jen-La, Diab, Mahmud, Volokh, Michael, Teitelboim, Ayelet, Mokari, Taleb. Highly luminescent CuGaxIn1−xSySe2−y nanocrystals from organometallic single-source precursors. Journal of materials chemistry. C, Materials for optical and electronic devices, vol.3, no.18, 4657-4662.

  43. Mitzi, David B., Kosbar, Laura L., Murray, Conal E., Copel, Matthew, Afzali, Ali. High-mobility ultrathin semiconducting films prepared by spin coating. Nature, vol.428, no.6980, 299-303.

  44. Mitzi, David B., Yuan, Min, Liu, Wei, Kellock, Andrew J., Chey, S. Jay, Deline, Vaughn, Schrott, Alex G.. A High-Efficiency Solution-Deposited Thin-Film Photovoltaic Device. Advanced materials, vol.20, no.19, 3657-3662.

  45. Mitzi, D.B., Yuan, M., Liu, W., Kellock, A.J., Chey, S.J., Gignac, L., Schrott, A.G.. Hydrazine-based deposition route for device-quality CIGS films. Thin solid films, vol.517, no.7, 2158-2162.

  46. Mitzi, David B.. Solution Processing of Chalcogenide Semiconductors via Dimensional Reduction. Advanced materials, vol.21, no.31, 3141-3158.

  47. Romeo, A., Terheggen, M., Abou-Ras, D., Bätzner, D. L., Haug, F.-J., Kälin, M., Rudmann, D., Tiwari, A. N.. Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Progress in photovoltaics, vol.12, no.2, 93-111.

  48. Chirilă, Adrian, Reinhard, Patrick, Pianezzi, Fabian, Bloesch, Patrick, Uhl, Alexander R., Fella, Carolin, Kranz, Lukas, Keller, Debora, Gretener, Christina, Hagendorfer, Harald, Jaeger, Dominik, Erni, Rolf, Nishiwaki, Shiro, Buecheler, Stephan, Tiwari, Ayodhya N.. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nature materials, vol.12, no.12, 1107-1111.

  49. Bouznit, Y., Beggah, Y., Boukerika, A., Lahreche, A., Ynineb, F.. New co-spray way to synthesize high quality ZnS films. Applied surface science, vol.284, 936-941.

  50. Naghavi, N., Spiering, S., Powalla, M., Cavana, B., Lincot, D.. High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD). Progress in photovoltaics, vol.11, no.7, 437-443.

  51. Jiang, Feng, Ozaki, Chigusa, Gunawan, Harada, Takashi, Tang, Zeguo, Minemoto, Takashi, Nose, Yoshitaro, Ikeda, Shigeru. Effect of Indium Doping on Surface Optoelectrical Properties of Cu2ZnSnS4 Photoabsorber and Interfacial/Photovoltaic Performance of Cadmium Free In2S3/Cu2ZnSnS4 Heterojunction Thin Film Solar Cell. Chemistry of materials : a publication of the American Chemical Society, vol.28, no.10, 3283-3291.

  52. Todorov, T., Carda, J., Escribano, P., Grimm, A., Klaer, J., Klenk, R.. Electro deposited In2S3 buffer layers for CuInS2 solar cells. Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, vol.92, no.10, 1274-1278.

  53. Kim, Jeehwan, Hiroi, Homare, Todorov, Teodor K., Gunawan, Oki, Kuwahara, Masaru, Gokmen, Tayfun, Nair, Dhruv, Hopstaken, Marinus, Shin, Byungha, Lee, Yun Seog, Wang, Wei, Sugimoto, Hiroki, Mitzi, David B.. High Efficiency Cu2ZnSn(S,Se)4 Solar Cells by Applying a Double In2S3/CdS Emitter. Advanced materials, vol.26, no.44, 7427-7431.

  54. O'Brien, Paul, McAleese, John. Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS. Journal of materials chemistry, vol.8, no.11, 2309-2314.

  55. Shin, Kyung-Sik, Park, Hye-Jeong, Kumar, Brijesh, Kim, Kyoung-Kook, Ihn, Soo-Ghang, Kim, Sang-Woo. Low-temperature growth and characterization of ZnO thin films for flexible inverted organic solar cells. Journal of materials chemistry, vol.21, no.33, 12274-12279.

  56. Sun, Yanming, Seo, Jung Hwa, Takacs, Christopher J., Seifter, Jason, Heeger, Alan J.. Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer. Advanced materials, vol.23, no.14, 1679-1683.

  57. Shanmuganathan, G., Banu, I.B.S., Krishnan, S., Ranganathan, B.. Influence of K-doping on the optical properties of ZnO thin films grown by chemical bath deposition method. Journal of alloys and compounds, vol.562, 187-193.

  58. Baruah, Sunandan, Dutta, Joydeep. Hydrothermal growth of ZnO nanostructures. Science and technology of advanced materials, vol.10, no.1, 013001-.

  59. Merdes, Saoussen, Ziem, Florian, Lavrenko, Tetiana, Walter, Thomas, Lauermann, Iver, Klingsporn, Max, Schmidt, Sebastian, Hergert, Frank, Schlatmann, Rutger. Above 16% efficient sequentially grown Cu(In,Ga)(Se,S)2‐based solar cells with atomic layer deposited Zn(O,S) buffers. Progress in photovoltaics, vol.23, no.11, 1493-1500.

  60. Shinagawa, T., Otomo, S., Katayama, J.i., Izaki, M.. Electroless deposition of transparent conducting and <0001>-oriented ZnO films from aqueous solutions. Electrochimica acta, vol.53, no.3, 1170-1174.

  61. Ravindiran, M., Praveenkumar, C.. Status review and the future prospects of CZTS based solar cell – A novel approach on the device structure and material modeling for CZTS based photovoltaic device. Renewable & sustainable energy reviews, vol.94, 317-329.

  62. Yang, Kee-Jeong, Son, Dae-Ho, Sung, Shi-Joon, Sim, Jun-Hyoung, Kim, Young-Ill, Park, Si-Nae, Jeon, Dong-Hwan, Kim, JungSik, Hwang, Dae-Kue, Jeon, Chan-Wook, Nam, Dahyun, Cheong, Hyeonsik, Kang, Jin-Kyu, Kim, Dae-Hwan. A band-gap-graded CZTSSe solar cell with 12.3% efficiency. Journal of materials chemistry. A, Materials for energy and sustainability, vol.4, no.26, 10151-10158.

  63. Mitzi, D.B., Gunawan, O., Todorov, T.K., Wang, K., Guha, S.. The path towards a high-performance solution-processed kesterite solar cell. Solar energy materials and solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion, vol.95, no.6, 1421-1436.

  64. Wang, Wei, Winkler, Mark T., Gunawan, Oki, Gokmen, Tayfun, Todorov, Teodor K., Zhu, Yu, Mitzi, David B.. Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency. Advanced energy materials, vol.4, no.7, 1301465-.

  65. Septina, W., Ikeda, S., Kyoraiseki, A., Harada, T., Matsumura, M.. Single-step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure. Electrochimica acta, vol.88, 436-442.

  66. Nguyen, Thi Hiep, Septina, Wilman, Fujikawa, Shotaro, Jiang, Feng, Harada, Takashi, Ikeda, Shigeru. Cu2ZnSnS4thin film solar cells with 5.8% conversion efficiency obtained by a facile spray pyrolysis technique. RSC advances, vol.5, no.95, 77565-77571.

  67. Bag, Santanu, Gunawan, Oki, Gokmen, Tayfun, Zhu, Yu, Mitzi, David B.. Hydrazine-Processed Ge-Substituted CZTSe Solar Cells. Chemistry of materials : a publication of the American Chemical Society, vol.24, no.23, 4588-4593.

  68. Yang, Wenbing, Duan, Hsin-Sheng, Cha, Kitty C., Hsu, Chia-Jung, Hsu, Wan-Ching, Zhou, Huanping, Bob, Brion, Yang, Yang. Molecular Solution Approach To Synthesize Electronic Quality Cu2ZnSnS4 Thin Films. Journal of the American Chemical Society, vol.135, no.18, 6915-6920.

  69. Kim, Inhyuk, Kim, Kyujin, Oh, Yunjung, Woo, Kyoohee, Cao, Guozhong, Jeong, Sunho, Moon, Jooho. Bandgap-Graded Cu2Zn(Sn1-xGex)S4 Thin-Film Solar Cells Derived from Metal Chalcogenide Complex Ligand Capped Nanocrystals. Chemistry of materials : a publication of the American Chemical Society, vol.26, no.13, 3957-3965.

  70. Riha, Shannon C., Parkinson, Bruce A., Prieto, Amy L.. Solution-Based Synthesis and Characterization of Cu2ZnSnS4 Nanocrystals. Journal of the American Chemical Society, vol.131, no.34, 12054-12055.

  71. Du, Hui, Yan, Fei, Young, Matthew, To, Bobby, Jiang, Chun-Sheng, Dippo, Pat, Kuciauskas, Darius, Chi, Zhenhuan, Lund, Elizabeth A., Hancock, Chris, Hlaing OO, Win Maw, Scarpulla, Mike A., Teeter, Glenn. Investigation of combinatorial coevaporated thin film Cu2ZnSnS4. I. Temperature effect, crystalline phases, morphology, and photoluminescence. Journal of applied physics, vol.115, no.17, 173502-.

  72. Lund, E. A., Du, H., Hlaing OO, W. M., Teeter, G., Scarpulla, M. A.. Investigation of combinatorial coevaporated thin film Cu2ZnSnS4 (II): Beneficial cation arrangement in Cu-rich growth. Journal of applied physics, vol.115, no.17, 173503-.

  73. Kattan, N. A., Griffiths, I. J., Cherns, D., Fermín, D. J.. Observation of antisite domain boundaries in Cu2ZnSnS4 by atomic-resolution transmission electron microscopy. Nanoscale, vol.8, no.30, 14369-14373.

  74. Ibáñez, Maria, Zamani, Reza, LaLonde, Aaron, Cadavid, Doris, Li, Wenhua, Shavel, Alexey, Arbiol, Jordi, Morante, Joan Ramon, Gorsse, Stéphane, Snyder, G. Jeffrey, Cabot, Andreu. Cu2ZnGeSe4 Nanocrystals: Synthesisand Thermoelectric Properties. Journal of the American Chemical Society, vol.134, no.9, 4060-4063.

  75. Ford, Grayson M., Guo, Qijie, Agrawal, Rakesh, Hillhouse, Hugh W.. Earth Abundant Element Cu2Zn(Sn1−xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication. Chemistry of materials : a publication of the American Chemical Society, vol.23, no.10, 2626-2629.

  76. Yi, Qinghua, Wu, Jiang, Zhao, Jie, Wang, Hao, Hu, Jiapeng, Dai, Xiao, Zou, Guifu. Tuning Bandgap of p-Type Cu2Zn(Sn, Ge)(S, Se)4 Semiconductor Thin Films via Aqueous Polymer-Assisted Deposition. ACS applied materials & interfaces, vol.9, no.2, 1602-1608.

  77. Guchhait, Asim, Su, Zhenghua, Tay, Ying Fan, Shukla, Sudhanshu, Li, Wenjie, Leow, Shin Woei, Tan, Joel Ming Rui, Lie, Stener, Gunawan, Oki, Wong, Lydia Helena. Enhancement of Open-Circuit Voltage of Solution-Processed Cu2ZnSnS4 Solar Cells with 7.2% Efficiency by Incorporation of Silver. ACS energy letters, vol.1, no.6, 1256-1261.

  78. Chen, Qinmiao, Cheng, Shuyi, Zhuang, Songlin, Dou, Xiaoming. Cu2ZnSnS4 solar cell prepared entirely by non-vacuum processes. Thin solid films, vol.520, no.19, 6256-6261.

  79. Lee, Wonjoo, Lee, Jungwoo, Yi, Whikun, Han, Sung-Hwan. Electric-Field Enhancement of Photovoltaic Devices: A Third Reason for the Increase in the Efficiency of Photovoltaic Devices by Carbon Nanotubes. Advanced materials, vol.22, no.20, 2264-2267.

  80. Wang, Mingqing, Choy, Kwang-Leong. All-Nonvacuum-Processed CIGS Solar Cells Using Scalable Ag NWs/AZO-Based Transparent Electrodes. ACS applied materials & interfaces, vol.8, no.26, 16640-16648.

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로