$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Inhibition of Metarhizium anisopliae infection of Protaetia brevitarsis seluensis larvae using several effective microorganisms 원문보기

International journal of industrial entomology, v.36 no.1, 2018년, pp.1 - 9  

Kwak, Kyu-Won (National Institute of Agricultural Science, Department of Agricultural Biology) ,  Kwon, Soon Woo (National Institute of Agricultural Science, Department of Agricultural Biology) ,  Nam, Sung-Hee (National Institute of Agricultural Science, Department of Agricultural Biology) ,  Park, Kwan-Ho (National Institute of Agricultural Science, Department of Agricultural Biology) ,  Kim, Eun-Sun (National Institute of Agricultural Science, Department of Agricultural Biology) ,  Lee, Hee-Sam (National Institute of Agricultural Science, Department of Agricultural Biology) ,  Choi, Ji-Young (National Institute of Agricultural Science, Department of Agricultural Biology) ,  Han, Myung-Sae (Kyungpook National University, Department of Bio-fibers and Materials Science)

Abstract AI-Helper 아이콘AI-Helper

The purpose of this study was to determine the best method for minimizing the occurrence of Metarhizium anisopliae infection of Protaetia brevitarsis seluensis during mass breeding on agricultural farms. There is a high demand for the use of P. b. seluensis larvae in animal feed and as food for huma...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Usually, insect farms use 4 % diluted sodium hypochlorite to prevent fungal contamination, and so it was used as the positive control in this study. The inhibitory effects of the EM against M. anisopliae were compared with that of the positive control and each experiment was replicated three times. The plates were checked for inhibition zones against M.
  • To identify the cultured fungi, genomic DNA was purified using a power soil DNA preparation kit (MO BIO, USA) and a polymerase chain reaction was performed on the prepared template DNA using ITS1 (TCCGTAGGTGAACCTGCGG) and ITS4 (TCCTCCGCTTATTGATATGC), or ITS1(TCCGTAGG TGAACCTGCGG) and LR3 (GTCTTGAAACACGGACC) as universal primers and an AccuPower PCR premix kit (Bioneer, Korea). The amplified polymerase chain reaction product was electrophoresed in 1 % agarose gel and purified using a QIAquick gel extraction kit (Qiagen, USA).
  • 6 at OD 600 nm, 1 mL) broth was spread evenly on the agar medium. Using a sterile steel borer, 5 mm wells of M. anisopliae were punched in the center of each EM smeared plate, and the antifungal activities of each EM were examined. Usually, insect farms use 4 % diluted sodium hypochlorite to prevent fungal contamination, and so it was used as the positive control in this study.

대상 데이터

  • M. anisopliae (KACC 40969), B. subtilis (KACC 17047), L. plantarum (KACC 10552), and S. cerevisiae (KACC 30068) were obtained from the Korean Agricultural Culture Collection (KACC), Rural Development Administration (RDA), Wanju, Korea. B.
  • After spraying with water and mixing thoroughly, the sawdust was fermented for 30 d until gas was no longer produced. The fermented sawdust was purchased from the Smurf Bugs farm in Namyang-ju, Gyeonggi-do, Korea.
  • seluensis larvae, the antifungal effects of an effective microorganisms (EM) liquid mixture with three beneficial microorganisms, B. subtilis, L. plantarum, and S. cerevisiae, was tested.

데이터처리

  • A student’s t-test was used to assess the statistical differences among each group.

이론/모형

  • Antagonistic activity was measured using the agar ×well diffusion assay method developed by Grover and Moore (1962).
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Blagojev N, Skrinjar M, Veskovic-Moracanin S, Soso V (2012) Control of mould growth and mycotoxin production by lactic acid bacteria metabolites. Roman. Biotechnol Lett 17, 7219-7226. 

  2. Chernaki-Leffer AM, Sosa-Gomez DR, Almeida LM (2007) Selection for entomopathogenic fungi and LD50 of Metarhizium anisopliae (Metsch.) Sorok. for the lesser mealworm Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Revista Brasileira de Ciencia Avicola 9, 187-191. 

  3. Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Strom K et al. (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 45, 309-318. 

  4. Grover RK, Moore JD (1962) Toximetric studies of fungicides against brown rot organisms, sclerotina-fructicola and S-laxa. Phytopathology 52, 876-880. 

  5. Kang M, Kang C, Lee H, Kim E, Kim J, Kwon, O et al. (2011) Effects of fermented aloe vera mixed diet on larval growth of Protaetia brevitarsis seulensis and protective effects of its extract against CCl4-induced hepatotoxicity in Sprague-Dawley rats. Entomol Res 42, 275-299. 

  6. Kim C, Lee J, Kim B, Lee M, Kang K, Joo W (2013) The optimal condition and enzyme activity of entomopathogenic fungus Beauveria bassiana using extracted rice bran. J Life Sci 23, 1010-1018. 

  7. Kim HG, Park K, Lee S, Kwak K, Choi J. (2015) Effects of different diets and temperatures on larval growth of the white-spotted flower chafer, Protaetia brevitarsis (Kolbe) (Coleoptera: Scarabaeidae). Int J Indust Entomol 31, 75-78. 

  8. Kluge B, Vater J, Salnikow J, Eckart K (1988) Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett 231, 107-110. 

  9. Kwak K, Nam S, Choi J, Lee S, Kim H, Kim S et al. (2015) Simultaneous detection of fungal, bacterial, and viral pathogens in insects by multiplex PCR and capillary electrophoresis. Int J Indust Entomol 30, 64-74. 

  10. Kwak K, Han M, Nam S, Park K, Kim E, Lee S, Choi J et al (2016) Effect of Saccharomyces cerevisiae consumption on the pathogenicity of Beauveria bassiana in Protaetia brevitarsis. Int J Indust Entomol 33(1), 1-5. 

  11. Kwon H, Bang K, Cho S (2014) Characterization of the hemocytes in larvae of Protaetia brevitarsis seulensis: involvement of granulocyte-mediated phagocytosis. PloS One 9(8), 1-12. 

  12. Li J, Yang Q, Zhao L, Wang Y (2008) Antifungal substance from biocontrol Bacillus subtilis B29 strain. China Biotechnol 28, 59-65 (in Chinese). 

  13. Majumdar SK, Bose SK (1958) Mycobacillin, a new antifungal antibiotic produced by B. subtilis. Nature 181, 134-135. 

  14. Moyne AL, Cleveland TE, Tuzun S (2004) Molecular characterization and analysis of operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234, 43-49. 

  15. Pandey DK, Tripathi NN, Tripathi RO, Dixit SN (1982) Fungitoxic and phytotoxic properties of essential oil of Phylis sauvolensis. Pfkrankh. Pfschuz 89, 334-346. 

  16. Pendland JC, Boucias DG (1998) Characterization of monoclonal antibodies against cell wall epitopes of the insect pathogenic fungus, Nomuraea rileyi: differential binding to fungal surfaces and cross-reactivity with host hemocytes and basement membrane components. Euro J C biol 75, 118-127. 

  17. Peypoux F, Pommier MT, Marion D, Ptak M, Das BC, Michel G (1986) Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J Antibiotics 39, 636-641. 

  18. Shetty PH, Jespersen L (2006) Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci Technol 17, 48-55. 

  19. Silman RW, Nelson TC, Bothast RJ (1991) Comparison of culture methods for production of Collectotrichum truncatum spore for use as a mycoherbicide. FEMS Microbiol Lett 78(1), 69-74. 

  20. Strom K, Sjogren J, Broberg A, Schnurer J (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol 68, 4322-4327. 

  21. Tebbets B, Yu Z, Stewart D, Zhao LX, Jiang Y, Xu LH et al. (2013) Identification of antifungal natural products via Saccharomyces cerevisiae bioassay: insights into macrotetrolide drug spectrum, potency and mode of action. Med Mycol 51, 280-289. 

  22. Teixeira ML, Dalla Rosa A, Brandelli A (2013) Characterization of an antimicrobial peptide produced by Bacillus subtilis subsp. spizezinii showing inhibitory activity towards Haemophilus parasuis. Microbiol 159, 980-988. 

  23. Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G et al. (2013) Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the United Nations (FAO), Rome. 

  24. Yoo YC, Shin BH, Hong JH, Lee J, Chee HY, Song KS et al. (2007) Isolation of fatty acids with anticancer activity from Protaetia brevitarsis Larva. Arch Pharm Res 30, 361-365. 

  25. Zimmermann G (2007) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocon Sci Technol 17, 879-920 

  26. Zars T (2003) Hot and cold in Drosophila larvae, Trends Neurosci 26, 575-577 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로