$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Although fluoride is an essential trace element, ingestion of excessive amount of fluoride could have detrimental effect on human health. Generally, the bioavailability of fluoride in soils was low, but it could be harmful to the environment depending on the soil properties. Therefore, it is necessa...

주제어

표/그림 (13)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 토양 중 불소의 분포특성을 확인하기 위해 지질단위를 고려한 전국 불소 배경농도 지점 및 토지 이용도별 조사지점을 선정하여 토양 중 불소 농도를 조사하였다. 또한 단일추출법을 이용하여 불소의 생물유효태 함량(water extractable, 0.01 M CaCl2 extractable)을 평가하고 연속추출법에 의한 불소의 화학적 존재형태를 규명하여 토양 중 불소 거동과 토양특성과의 상관성을 파악 하고자 하였다.
  • 본 연구에서는 토양 중 불소의 분포특성을 확인하기 위해 지질단위를 고려한 전국 불소 배경농도 지점 및 토지 이용도별 조사지점을 선정하여 토양 중 불소 농도를 조사하였다. 또한 단일추출법을 이용하여 불소의 생물유효태 함량(water extractable, 0.
  • 앞서 평가한 단일추출법에 의한 불소 함량과 토양 이·화학적 특성간의 상관관계를 평가하여 토양 중 불소의 생물유효도를 높이고 환경매체 중 거동을 용이하게 하는 토양특성을 파악하고자 하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
불소를 함유하고 있는 광물은 무엇이 있는가? , 2005), 불소를 함유하고 있는 광물은 수백 개에 이르는 것으로 알려져 있다(Weinstein and Davison, 2004). 매우 희귀하지만griceite(LiF) 라는 광물은 불소를 73% 함유하고 있으며(Weinstein and Davison, 2004), 그 외에 불소를 함유하고 있는 주요 광물로는 fluorite(CaF2), fluoroapatite (Ca5(PO4)3F), cryolite(Na3AlF6), villiaumite(NaF), topaz (Al2(SiO4)F2) 등이 있다(Handa, 1975; Hem, 1985; Apambire et al., 1997; Cronin et al.
1,000 mg/kg 이상의 고농도를 보이는 불소 오염토양이 발생하는 원인은 무엇인가? 토양에 존재하는 불소화합물의 농도는 20에서 수천 mg/ kg까지 다양하게 보고되고 있으며(Davison, 1983), 일반적으로 토양 중 불소는 20~500 mg/kg의 농도 분포를 보이는 것으로 알려져 있다(Kabata-Pendias and Pendias, 1984). 1,000 mg/kg 이상의 고농도를 보이는 불소 오염토양은 자연적으로 불소함량이 높은 모암으로부터 발생했거나 인위적인 불소 오염원의 투입으로 발생한다(Yadav et al., 2018).
과도한 불소가 인체에 미치는 영향은 무엇인가? , 2011). 과도한 불소는 치아표면에 반점을 착색시키고, 인대를 석회화시키는 불소증(fluorosis)을 발생시킨다(Kowalski, 1999; Fawell et al., 2006; Death et al., 2015). 또한 지적 발달에 영향을 미치며(Sun et al., 2000), 호르몬 생산을 방해한다(Peckham et al., 2015).
질의응답 정보가 도움이 되었나요?

참고문헌 (67)

  1. Adriano, D.C. and Doner, H.E., 1982, Bromine, chlorine, and fluoride. In: A.L. Page, R.H. Miller and D.R. Keeney(eds.), Methods of Soil Analysis, Part II: Chemical and microbiological properties, American Society of Agronomy, Madison, WI, p. 449-483. 

  2. Alvarez-Ayuso, E., Gimenez, A., and Ballesteros, J.C., 2011, Fluoride accumulation by plants grown in acid soils amended with flue gas desulphurisation gypsum, J Hazard Mater., 192(3), 1659-1666. 

  3. Apambire, W.B., Boyle, D.R., and Michel, F.A., 1997, Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana, Environ. Geol., 33, 13-24. 

  4. Borah, J. and Saikia, D., 2011, Estimation of the concentration of Fluoride in the ground water of Tinsukia Town master plan area of the Tinsukia district, Assam, India, Scholars Res. Libr. 3(2), 202-206. 

  5. Burt, R., Wilson, M.A., Mays, M.D., and Lee, C.W., 2003, Major and trace elements of selected pedons in the USA, J. Environ. Qual., 32, 2109-2121. 

  6. Chae, G.T., Yun, S.T., Mayer, B., Kim, K.H., Kim, S.Y., Kwon, J.S., Kim, K., and Koh, Y.K., 2007, Fluorine geochemistry in bedrock groundwater of South Korea, Sci. Tot. Environ,. 385, 272-283. 

  7. Chavoshi, E., Afyuni, M., Hajabbasi, M.A., Khoshgoftarmanesh, A.H., Abbaspour, K.C., Shariatmadari, H., and Mirghafari, N., 2011, Health risk asssessment of fluoride exposure in soil, plants, and water at Isfahan, Iran, Human Ecol. Risk Assess., 17, 414-430. 

  8. Choi, D.K., 2013, Tectonic provinces of the Korean Peninsula, Proceedings of the Annual Conference of the Geological Society of Korea, Geol. Soc. Kor., Jeju, Korea, p. 22-22. 

  9. Cronin, S.J., Manoharan, V., Hedley, M.J., and Lognathan, P., 2000, Fluoride: a review of its fate, bioavailability, and risks of fluorosis in grazed-pasture system in New Zealand, N.Z. J. Agric. Res., 43, 295-321. 

  10. Davison, A.W., 1983, Uptake, translocation and accumulation of soil and airborne fluorides by vegetation, In: J.L. Shupe, H.B. Peterson, and N.C. Leone(eds), Fluorides: effects on vegetation, animals and humans, Paragon Press, UT, USA, p. 62-82. 

  11. Death, C., Coulson, G., Kierdorf, U., Kierdorf, H., Morris, W.K., and Hufschmid, J., 2015, Dental fluorosis and skeletal fluoride content as biomarkers of excess fluoride exposure in marsupials, Sci. Tot. Environ., 533, 528-541. 

  12. Edmunds, W.M. and Smedley, P.L., 2013, Fluoride in natural waters, In: O. Selinus, B. Alloway, J.A. Centeno, R.B. Finkelman, R. Fuge, U. Lindh, and P.L. Smedley(eds.), Essentials of medical geology. Elsevier Academic Press, London, UK, p. 311-336. 

  13. Erdal, S. and Buchanan, S.N., 2005, A quantitative look at fluorosis, fluoride exposure, and intake in children using a health risk assessment approach, Environ. Health Perspect., 113, 111-117. 

  14. Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, L., and Magara, Y., 2006, Fluoride in drinking water, IWA Publishing, London, 144 p. 

  15. Fomon, S.J., Ekstrand, S.J., and Ziegler, E.E., 2000, Fluoride intake and prevalence of dental fluorosis: trends in fluoride intake with special attention to infants, J. Public Health Dent., 60, 131-139. 

  16. Frencken, J., 1992, Endemic fluorosis in developing countries: causes, effects and possible solution, TNO Institute for Preventive Health Care, The Netherlands, p.2-3. 

  17. Fuge, R. and Andrews, M.J., 1988, Fluorine in the UK environment, Environ. Geochem. Health, 10, 96-104. 

  18. Fung, K.F., Zhang, Z.Q., Wong, J.W.C., and Wong, M.H., 1999, Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion, Environ. Pollut., 104, 197-205. 

  19. Gago, C., Romar, A., Fernandez-Marcos, M.L., and Alvarez, E., 2014, Fluoride sorption and desorption on soils located in the surroundings of an aluminium smelter in Galicia (NW Spain), Environ. Earth Sci., 72(10), 4105-4114. 

  20. Gao, H.J., Zhang, Z.Z., and Wan, X.C., 2012, Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants, Environ. Geochem. Health, 34(5), 551-562. 

  21. Gao, S., Luo, T.C., Zhang, B.R., Zhang, H.F., Han, Y.W., Hu, Y.K., and Zhao, Z.D., 1998, Chemical composition of the continental crust as revealed by studies in east China, Geochim. Cosmochim. Acta, 62, 1959-1975. 

  22. Groenenberg, J.E., Romkens, P.F.A.M., Comans, R.N.J., Luster, J., Pampura, T., Shotbolt, L., Tipping, E., and De Vries, W., 2010, Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils: derivation of relationships for free metal ion activities and validation with independent data, Eur. J. Soil Sci., 61, 58-73. 

  23. Haidouti, C., 1991, Fluoride distribution in soils in the vicinity of a point emission source in Greece, Geoderma, 49, 129-138. 

  24. Handa, B.K., 1975, Geochemistry and genesis of fluoride-containing ground waters in India, Groundwater, 13, 275-281. 

  25. Hedrick, J.B., 1995, The global rare-earth cycle, J. Alloys Compds., 225, 609-618. 

  26. Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water, 3rd edition, US Geological Survey Water-Supply Paper 2254, University of Virginia, Charlottesville, 263 p. 

  27. Jacks, G., Bhattacharya, P., Chaudhary, V., and Singh, K.P., 2005, Controls on the genesis of some high-fluoride groundwaters in India, Appl. Geochem., 20, 221-228. 

  28. Kabata-Pendias, A., 2010, Trace elements in soils and plants, CRC Press, Boca Raton, FL. 

  29. Kabata-Pendias, A., and Pendias, H., 1984, Trace elements in soils and plants, CRC Press, Roca Raton, FL, USA. 

  30. Kim, K.H., Yun, S.T., Chae, G.T., Kim, S.Y., Kwon, J.S., and Koh, Y.K., 2006, Hydrogeochemical evolution related to high fluoride concentrations in deep bedrock groundwaters, Korea, Econ. Environ. Geol., 39(1), 27-38. 

  31. Korea Institute of Geoscience and Mineral Resources, 2016, Multiplatform GEOscience Information System (MEGO). 

  32. Kowalski, F., 1999, Fluoridation, J. AWWA, 91, 4. 

  33. Lahermo, P., Sandstrom, H., and Malisa, E., 1991, The occurrence and geochemistry of fluorides in natural waters in Finland and East Africa with reference to their geomedical implications, J. Geochem. Explor., 41(1), 65-79. 

  34. Lim, G.H., Kim, K.H., Seo, B.H., and Kim, K.R., 2014, Transfer function for phytoavailable heavy metals in contaminated agricultural soils: the case of the Korean agricultural soils affected by the abandoned mining sites, Kor. J. Environ. Agric., 33(4), 271-281. 

  35. Loganathan, P., Gray, C.W., Hedley, M.J., and Roberts, A.H.C., 2006, Total and soluble fluorine concentrations in relation to properties of soils in New Zealand, Eur. J. Soil Sci., 57(3), 411-421. 

  36. Malago, J., Makoba, E., and Muzuka, A.N.N., 2017, Fluoride levels in surface and groundwater in Africa: a review, Am. J. Water Sci. Eng., 3(1), 1-17. 

  37. Minasny, B., McBratney, A.B., Brough, D.M., and Jacquier, D., 2011, Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration, Eur. J. Soil Sci., 62, 728-732. 

  38. Naseem, S., Rafique, T., Bashir, E., Bhanger, M.I., Laghari, A., and Usmani, T.H., 2010, Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan, Chemosphere, 78(11), 1313-1321. 

  39. National Research Council (NRC), 2006, Fluoride in drinking water: a scientific review of EPA's standards, National Academies Press, Washington DC, p. 530. 

  40. Ozsvath, D.L., 2009, Fluoride and environmental health: a review, Rev. Environ. Sci. Biotechnol., 8, 59-79. 

  41. Peckham, S., Lowery, D., and Spencer, S., 2015, Are fluoride levels in drinking water associated with hypothyroidism prevalence in England? A large observational study of GP practice data and fluoride levels in drinking water, J. Epidemiol. Commun. Health, 69, 619-624. 

  42. Pickering, W.F., 1985, The mobility of soluble fluoride in soils, Environ. Pollut. Ser. B Chem. Phys., 9, 281-308. 

  43. Polomski, J., Fluhler, H., and Blaser, P., 1982, Accumulation of air-borne fluoride in soils, J. Environ. Qual., 11, 457-461. 

  44. Poovaiah, B.W., 1988, Calcium and senescence, In: L. Nooden, and A.C. Leopold(eds), Senescence and aging in plants, Academic Press, NY, USA. 

  45. Rodriguez, C.G., Rodriguez, E.A., and Marcos, M.L.F., 2001, Comparison of methods for fluoride extraction from forest and cropped soils in vicinity of and aluminum smelter in galicia (NW Spain), Commun. Soil Sci. Plant Analysis, 32(15-16), 2503-2517. 

  46. Roorda van Eysinga, J.P.N.L., 1974, The uptake of fluoride by the root and its effect on various crops, particularly freesias, Agic. Res. Report, 831 

  47. Rudnick, R.L., and Gao, S., 2003, Composition of the continental crust, In: R.L. Rudnick(ed.), The Crust, Treatise on Geochemistry vol. 3, p. 1-64. 

  48. Saxena, V.S., and Ahmed, S., 2003, Inferring the chemical parameters for the dissolution of fluoride in groundwater, Environ. Geol., 43, 731-736. 

  49. Senkondo, Y.H., 2017, Immobilization of fluoride in soils through soil properties - a review, J. Exp. Agric. Int., 19(1), 1-8. 

  50. Shacklette, H.T., and Boerngen, J.G., 1984, Element concentrations in soils and other surficial materials of the conterminous United States, Professional Paper 1270, U.S. Geological Survey, U.S. Government Printing Office, Washington DC, pp. 105. 

  51. Shaw, D.M., Reilly, G.A., Muysson, J.R., Pattenden, G.E., and Campbell, F.E., 1967, An estimate of the chemical composition of the Canadian Precanbrian shield, Can. J. Earth Sci., 4, 829-853. 

  52. Shaw, D.M., Dostal, J., and Keays, R.R., 1976, Additional estimates of continental surface Precambrian shield composition in Canada, Geochim. Cosmochim. Acta, 40, 73-83. 

  53. Skjelkvale, B.L., 1994, Factors influencing fluoride concentrations in Norwegian lakes, Water Air Soil Pollut., 77, 151-167. 

  54. Sun, Z., Wu, L., Wang, X., and Liu, S., 2000, Effect if high-fluoride water on intelligence in children, Fluoride, 33, 74-78. 

  55. Tessier, A., Campbell, P.G., and Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Analyt. Chem., 51(7), 844-851. 

  56. Totsche, K.U., Wilcke, W., Krber, M., Kobza, J., and Zech, W., 2000, Evaluation of fluoride-induced metal mobilization in soil columns, J. Environ. Qual., 29(2), 454-459. 

  57. Tyurin, I.V., 1931, A new modification of the volumetric method of determining soil organic matter by means of chromic acid, Pochvovedenie, 26, 36-47. 

  58. USEPA, 1986, Method 9080: Cation-exchange capacity of soils (ammonium acetate), National Technical Information Service, VA, USA. 

  59. Vinogradov, A.P., 1954, Geochemie seltener und nur in Spuren vorhandener chemischer elemente in Boden, Academie-Vertag, Berilin, Germany. 

  60. Vithanage, M., and Bhattacharya, P., 2015, Fluoride in the environment: sources, distribution and defluoridation, Environ. Chem. Lett., 13(2), 131-147. 

  61. Wang, Y. and Wei, F.S., 1995, Chemistry of elements in the pedosphere environment, China Environmental Science Press, Beijing, China, p. 129-144. 

  62. Ware, G.W., 1975, Pesticides: an auto-tutorial approach, W.H, Freeman and Co Ltd, SF, USA. 

  63. Wedepohl, H., 1995, The composition of the continental crust, Geochim. Cosmochim. Acta, 59, 1217-1239. 

  64. Weinstein, L.H., and Davison, A.W., 2004, Fluorides in the environment: effects on plants and animals, 1st edition, CABI Publishing, Walingford, Oxford, UK. 

  65. Xu, L., Lou, K. Feng, F., and Tan, J., 2006, Studies on the chemical mobility of fluorine in rocks, Research Report Fluoride, 39(2), 145-151. 

  66. Yadav, N., Rani, K., Yadav, S.S., Yadav, D.K., Yadav, V.K., and Yadav, N., 2018, Soil and water pollution with fluoride, geochemistry, food safety issues and reclamation - a review, Int. J. Curr. Microbiol. App. Sci., 7(5), 1147-1162. 

  67. Zhou, Q., and Sun, T., 2002, Effects of chromium(VI) on extractability and plant uptake of fluorine in agricultural soils of Zhejiang province, China, Water Air Soil Pollut., 133(1), 145-160. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로