$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

논문 상세정보

수환경에서 세슘 흡착 제거의 최근 동향

Recent Advances in Adsorption Removal of Cesium from Aquatic Environment

초록

후쿠시마 다이치 핵발전소의 사고 이후 방사능 오염이 중요한 환경 관심사가 되었다. 원자량 134와 137 세슘은 주요 핵분열 산물이며, 이물질들은 방사능 오염의 주된 문제들이다. 후쿠시마 다이치 핵 발전소 사고에서 다량의 세슘이 방출되었으며, 이 사고의 결과, 많은 연구자들이 방사능-독성 세슘 제거를 위한 흡착제 개발에 집중하였다. 본 총설에서는 세슘 제거를 위하여 각광을 받는 물질로서 청색 안료와 이와 유사한 화합물 제조의 최근 발전 동향을 자세하게 검토하였다. 또한, 다양한 형태의 점토와 점토 기반 흡착제 및 새로 개발된 흡착제를 이용한 세슘 흡착의 최근 연구들을 고찰하였다.

Abstract

Radioactive contamination has become an important environmental concern after the accident occurred in Fukushima Daiichi Nuclear Power Plants. $^{134}Cs$ and $^{137}Cs$ are the major fission products and they are main problems in radioactive contamination. Huge amounts of Cs were released during the Fukushima Daiichi Nuclear Power Plants accident and as a result of this incident, many researchers focused on the development of adsorbents for decontamination of radiotoxic cesium. This review will critically evaluate recent advances in the preparation of Prussian blue and its analogue compounds, which are promising materials for cesium removal. Furthermore, this review will discuss recent studies on the cesium adsorption using different types of clay and clay based adsorbents and summarize various types of newly developed Cs adsorbents reported in recent years.

참고문헌 (85)

  1. 1. J. Wu, Impacts of Fukushima Daiichi Nuclear Power Plant accident on the Western North Pacific and the China Seas: Evaluation based on field observation of $^{137}Cs$ , Mar. Pollut. Bull., 127, 45-53 (2018). 
  2. 2. B. F. Myasoedov and S. N. Kalmykov, Nuclear power industry and the environment, Mendeleev Commun., 25, 319-328 (2015). 
  3. 3. H. Tsukada, H. Hasegawa, S. Hisamatsu, and S. Yamasaki, Transfer of 137Cs and stable Cs from paddy soil to polished rice in Aomori, Japan. J. Environ. Radioact., 59, 351-363 (2002). 
  4. 4. T. Lan, Y. Feng, J. Liao, X. Li, C. Ding, D. Zhang, J. Yang, J. Zeng, Y. Yang, J. Tang, and N. Liu, Biosorption behavior and mechanism of cesium-137 on Rhodosporidium fluviale strain UA2 isolated from cesium solution, J. Environ. Radioact., 134, 6-13 (2014). 
  5. 5. C. Xiao, A. Zhang, and Z. Chai, Synthesis and characterization of a novel organic-inorganic hybrid supramolecular recognition material and its selective adsorption for cesium, J. Radioanal. Nucl. Chem., 299, 699-708 (2013). 
  6. 6. M. R. Awual, S. Suzuki, T. Taguchi, H. Shiwaku, Y. Okamoto, and T. Yaita, Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents, Chem. Eng. J., 242, 127-135 (2014). 
  7. 7. R. Kamaraj and S. Vasudevan, Evaluation of electrocoagulation process for the removal of strontium and cesium from aqueous solution, Chem. Eng. Res. Des., 93, 522-530 (2015). 
  8. 8. S. Ding, Y. Yang, H. Huang, H. Liu, and L. Hou, Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium, J. Hazard. Mater., 294, 27-34 (2015). 
  9. 9. F. Jia and J. Wang, Separation of cesium ions from aqueous solution by vacuum membrane distillation process, Prog. Nucl. Energy, 98, 293-300 (2017). 
  10. 10. C. C. Pavel and K. Popa, Investigations on the ion exchange process of $Cs^+$ and $Sr^{2+}$ cations by ETS materials, Chem. Eng. J., 245, 288-294 (2014). 
  11. 11. S. Khandaker, T. Kuba, S. Kamida, and Y. Uchikawa, Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal, J. Environ. Chem. Eng., 5, 1456-1464 (2017). 
  12. 12. R. Chen, H. Tanaka, T. Kawamoto, M. Asai, C. Fukushima, M. Kurihara, M. Watanabe, M. Arisaka, and T. Nankawa, Preparation of a film of copper hexacyanoferrate nanoparticles for electrochemical removal of cesium from radioactive wastewater, Electrochem. Commun., 25, 23-25 (2012). 
  13. 13. Y. Zheng, J. Qiao, J. Yuan, J. Shen, A. Wang, and L. Niu, Electrochemical Removal of Radioactive Cesium from Nuclear Waste Using the Dendritic Copper Hexacyanoferrate/Carbon Nanotube Hybrids, Electrochim. Acta., 257, 172-180 (2017). 
  14. 14. P. J. Faustino, Y. Yang, J. J. Progar, C. R. Brownell, N. Sadrieh, J. C. May, E. Leutzinger, D. A. Place, E. P. Duffy, F. Houn, S. A. Loewke, V. J. Mecozzi, C. D. Ellison, M. A. Khan, A. S. Hussain, and R. C. Lyon, Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue, J. Pharm. Biomed. Anal., 47, 114-125 (2008). 
  15. 15. G.-R. Chen, Y.-R. Chang, X. Liu, T. Kawamoto, H. Tanaka, D. Parajuli, T. Kawasaki, Y. Kawatsu, T. Kobayashi, M.-L. Chen, Y.-K. Lo, Z. Lei, and D.-J. Lee, Cesium removal from drinking water using Prussian blue adsorption followed by anion exchange process, Sep. Purif. Technol., 172, 147-151 (2017). 
  16. 16. M. Ishizaki, S. Akiba, A. Ohtani, Y. Hoshi, K. Ono, M. Matsuba, T. Togashi, K. Kananizuka, M. Sakamoto, A. Takahashi, T. Kawamoto, H. Tanaka, M. Watanabe, M. Arisaka, T. Nankawa, and M. Kurihara, Proton-exchange mechanism of specific $Cs^+$ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules, Dalton Trans., 42, 16049-16055 (2013). 
  17. 17. N. L. Torad, M. Hu, M. Imura, M. Naito, and Y. Yamauchi, Large Cs adsorption capability of nanostructured Prussian blue particles with high accessible surface areas, J. Mater. Chem., 22, 18261-18267 (2012). 
  18. 18. G.-R. Chen, Y.-R. Chang, X. Liu, T. Kawamoto, H. Tanaka, A. Kitajima, D. Parajuli, M. Takasaki, K. Yoshino, M.-L. Chen, Y.-K. Lo, Z. Lei, and D.-J. Lee, Prussian blue (PB) granules for cesium (Cs) removal from drinking water, Sep. Purif. Technol., 143, 146-151 (2015). 
  19. 19. Y. Kim, Y. K. Kim, S. Kim, D. Harbottle, and J. W. Lee, Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption, Chem. Eng. J., 313, 1042-1050 (2017). 
  20. 20. H. G. Mobtaker, T. Yousefi, and S. M. Pakzad, Cesium removal from nuclear waste using a magnetical CuHCNPAN nano composite, J. Nucl. Mater., 482, 306-312 (2016). 
  21. 21. J.-Y. Su, G.-P. Jin, T. Chen, X.-D. Liu, C.-N. Chen, and J.-J. Tian, The characterization and application of prussian blue at graphene coated carbon fibers in a separated adsorption and electrically switched ion exchange desorption processes of cesium, Electrochim. Acta., 230, 399-406 (2017). 
  22. 22. S. Feng, X. Li, F. Ma, R. Liu, G. Fu, S. Xing, and X. Yue, Prussian blue functionalized microcapsules for effective removal of cesium in a water environment, RSC Adv., 6, 34399-34410 (2016). 
  23. 23. G.-R. Chen, Y.-R. Chang, X. Liu, T. Kawamoto, H. Tanaka, D. Parajuli, M.-L. Chen, Y.-K. Lo, Z. Lei, and D.-J. Lee, Prussian blue non-woven filter for cesium removal from drinking water, Sep. Purif. Technol., 153, 37-42 (2015). 
  24. 24. T. Sasaki and S. Tanaka, Magnetic separation of cesium ion using Prussian blue modified magnetite, Chem. Lett., 41, 32-34 (2012). 
  25. 25. C. Thammawong, P. Opaprakasit, P. Tangboriboonrat, and P. Sreearunothai, Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment, J. Nanopar. Res., 15, 1689-1699 (2013). 
  26. 26. J. Jang and D. S. Lee, Magnetic Prussian blue nanocomposites for effective cesium removal from aqueous solution, Ind. Eng. Chem. Res., 55, 3852-3860 (2016). 
  27. 27. L. Chang, S. Chang, W. Chen, W. Han, Z. Li, Z. Zhang, Y. Dai, and D. Chen, Facile one-pot synthesis of magnetic Prussian blue core/shell nanoparticles for radioactive cesium removal, RSC Adv., 6, 96223-96228 (2016). 
  28. 28. H.-M. Yang, S.-C. Jang, S. B. Hong, K.-W. Lee, C. Roh, Y. S. Huh, and B.-K. Seo, Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive cesium from water, J. Alloys Compd., 657, 387-393 (2016). 
  29. 29. Y. Namiki, T. Namiki, Y. Ishii, S. Koido, Y. Nagase, A. Tsubota, N. Tada, and Y. Kitamoto, Inorganic-organic magnetic nanocomposites for use in preventive medicine: A rapid and reliable elimination system for cesium, Pharm. Res., 29, 1404-1418 (2012). 
  30. 30. S. Naeimi and H. Faghihian, Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of $Cs^+$ from aqueous solution, Sep. Purif. Technol., 175, 255-265 (2017). 
  31. 31. A. A. Kadam, J. Jang, and D. S. Lee, Facile synthesis of pectin-stabilized magnetic graphene oxide Prussian blue nanocomposites for selective cesium removal from aqueous solution, Bioresour. Technol., 216, 391-398 (2016). 
  32. 32. H. Yang, H. Li, J. Zhai, L. Sun, Y. Zhao, and H. Yu, Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil, Chem. Eng. J., 246, 10-19 (2014). 
  33. 33. C. Vincent, Y. Barre, T. Vincent, J.-M. Taulemesse, M. Robitzer, and E. Guibal, Chitin-Prussian blue sponges for Cs(I) recovery: From synthesis to application in the treatment of accidental dumping of metal-bearing solutions, J. Hazard. Mater., 287, 171-179 (2015). 
  34. 34. A. Takahashi, A. Kitajima, D. Parajuli, Y. Hakuta, H. Tanaka, S. Ohkoshi, and T. Kawamoto, Radioactive cesium removal from ash-washing solution with high pH and high K+-concentration using potassium zinc hexacyanoferrate, Chem. Eng. Res. Des., 109, 513-518 (2016). 
  35. 35. D. Dechojarassri, S. Asaina, S. Omote, K. Nishida, T. Furuike, and H. Tamura, Adsorption and desorption behaviors of cesium on rayon fibers coated with chitosan immobilized with Prussian blue, Int. J. Biol. Macromol., 104, 1509-1516 (2017). 
  36. 36. B. Hu, B. Fugetsu, H. Yu, and Y. Abe, Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium, J. Hazard. Mater., 217-218, 85-91 (2012). 
  37. 37. P. S. Liu, G. Cui, and Y. J. Guo, A lightweight porous ceramic foam loading Prussian blue analogue for removal of toxic ions in water, Mater. Lett., 182, 273-276 (2016). 
  38. 38. A. Kitajima, H. Tanaka, N. Minami, K. Yoshino, and T. Kawamoto, Efficient cesium adsorbent using prussian blue nanoparticles immobilized on cotton matrices, Chem. Lett., 41, 1473-1474 (2012). 
  39. 39. S. S. Metwally, I. M. Ahmed, and H. E. Rizk, Modification of hydroxyapatite for removal of cesium and strontium ions from aqueous solution, J. Alloys Compd., 709, 438-444 (2017). 
  40. 40. M. Darder, Y. Gonzalez-Alfaro, P. Aranda, and E. Ruiz-Hitzky, Silicate-based multifunctional nanostructured materials with magnetite and Prussian blue: application to cesium uptake, RSC Adv., 4, 35415-35421 (2014). 
  41. 41. C. Delchet, A. Tokarev, X. Dumail, G. Toquer, Y. Barre, Y. Guari, C. Guerin, J. Larionova, and A. Grandjean, Extraction of radioactive cesium using innovative functionalized porous materials, RSC Adv., 2, 5707-5716 (2012). 
  42. 42. R. Yi, G. Ye, F. Wu, M. Wen, X. Feng, and J. Chen, Highly efficient removal of 137Cs in seawater by potassium titanium ferrocyanide functionalized magnetic microspheres with multilayer core-shell structure, RSC Adv., 4, 37600-37608 (2014). 
  43. 43. K. S. Hwang, C. W. Park, K.-W. Lee, S.-J. Park, and H.-M. Yang, Highly efficient removal of radioactive cesium by sodium-copper hexacyanoferrate-modified magnetic nanoparticles, Colloids Surf. A, 516, 375-382 (2017). 
  44. 44. T. Sangvanich, V. Sukwarotwat, R. J. Wiacek, R. M. Grudzien, G. E. Fryxell, R. S. Addleman, C. Timchalk, and W. Yantasee, Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica, J. Hazard. Mater., 182, 225-231 (2010). 
  45. 45. N. Genevois, N. Villandier, V. Chaleix, E. Poli, L. Jauberty, and V. Gloaguen, Removal of cesium ion from contaminated water: Improvement of Douglas fir bark biosorption by a combination of nickel hexacyanoferrate impregnation and TEMPO oxidation, Ecol. Eng., 100, 186-193 (2017). 
  46. 46. C. Vincent, A. Hertz, T. Vincent, Y. Barre, and E. Guibal, Immobilization of inorganic ion-exchanger into biopolymer foams - Application to cesium sorption, Chem. Eng. J., 236, 202-211 (2014). 
  47. 47. N. Li, Z. Li, J. Yuan, J. Hu, J. Miao, Q. Zhang, L. Niu, and J. Song, Nickel hexacyanoferrate nanoparticles anchored to multiwalled carbon nanotubes with a grafted poly(4-vinylpyridine) linker for electrically switched ion exchange, Electrochim. Acta., 72, 150-156 (2012). 
  48. 48. Lalhmunsiama, C. Lalhriatpuia, D. Tiwari, and S.-M. Lee, Immobilized nickel hexacyanoferrate on activated carbons for efficient attenuation of radio toxic Cs(I) from aqueous solutions, Appl. Surf. Sci., 321, 275-282 (2014). 
  49. 49. H. Parab and M. Sudersanan, Engineering a lignocellulosic biosorbent - Coir pith for removal of cesium from aqueous solutions: Equilibrium and kinetic studies, Water Res., 44, 854-860 (2010). 
  50. 50. D. Ding, Z. Lei, Y. Yang, C. Feng, and Z. Zhang, Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell, J. Hazard. Mater., 270, 187-195 (2014). 
  51. 51. Y. Mihara, M. T. Sikder, H. Yamagishi, T. Sasaki, M. Kurasaki, S. Itoh, and S. Tanaka, Adsorption kinetic model of alginate gel beads synthesized micro particle-prussian blue to remove cesium ions from water, J. Water Process Eng., 10, 9-19 (2016). 
  52. 52. Y.-C. Lai, Y.-R. Chang, M.-L. Chen, Y.-K. Lo, J.-Y. Lai, and D.-J. Lee, Poly(vinyl alcohol) and alginate cross-linked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters, Bioresour. Technol., 214, 192-198 (2016). 
  53. 53. A. K. Vipin, B. Hu, and B. Fugetsu, Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water, J. Hazard. Mater., 258-259, 93-101 (2013). 
  54. 54. C. Dwivedi, S. K. Pathak, M. Kumar, S. C. Tripathi, and P. N. Bajaj, Preparation and characterization of potassium nickel hexacyanoferrate-loaded hydrogel beads for the removal of cesium ions, Environ. Sci. Water Res. Technol., 1, 153-160 (2015). 
  55. 55. C. Dwivedi, S. K. Pathak, M. Kumar, S. C. Tripathi, and P. N. Bajaj, Potassium cobalthexacyanoferrate-gel beads for cesium removal: kinetics and sorption studies, RSC Adv., 3, 22102-22110 (2013). 
  56. 56. J. Jang and D. S. Lee, Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system, Bioresour. Technol., 218, 294-300 (2016). 
  57. 57. C. Jeon, Removal of cesium ions from aqueous solutions using immobilized nickel hexacyanoferrate-sericite beads in the batch and continuous processes, J. Ind. Eng. Chem., 40, 93-98 (2016). 
  58. 58. O. Ozsoy and M. Bekbolet, Surface interactions of $Cs^+$ and $Co^{2+}$ with bentonite, Environ. Sci. Pollut. Res. Int., 25, 3020-3029 (2018). 
  59. 59. N. Suzuki, S. Ozawa, K. Ochi, T. Chikuma, and Y. Watanabe, Approaches for cesium uptake by vermiculite: Approaches for cesium uptake by vermiculite, J. Chem. Technol. Biotechnol., 88, 1603-1605 (2013). 
  60. 60. D. Tiwari, Lalhmunsiama, S. I. Choi, and S. M. Lee, Activated sericite: An efficient and effective natural clay material for attenuation of cesium from aquatic environment, Pedosphere, 24, 731-742 (2014). 
  61. 61. D. Ding, Z. Lei, Y. Yang, and Z. Zhang, Efficiency of transition metal modified akadama clay on cesium removal from aqueous solutions, Chem. Eng. J., 236, 17-28 (2014). 
  62. 62. H. Long, P. Wu, and N. Zhu, Evaluation of $Cs^+$ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite, Chem. Eng. J., 225, 237-244 (2013). 
  63. 63. B. Ma, S. Oh, W. S. Shin, and S.-J. Choi, Removal of $Co^{2+}$ , $Sr^{2+}$ and $Cs^+$ from aqueous solution by phosphate-modified montmorillonite (PMM), Desalination, 276, 336-346 (2011). 
  64. 64. X. Zheng, J. Dou, J. Yuan, W. Qin, X. Hong, and A. Ding, Removal of $Cs^+$ from water and soil by ammonium-pillared montmorillonite/ $Fe_3O_4$ composite, J. Environ. Sci., 56, 12-24 (2017). 
  65. 65. S. Yang, N. Okada, and M. Nagatsu, The highly effective removal of $Cs^+$ by low turbidity chitosan-grafted magnetic bentonite, J. Hazard. Mater., 301, 8-16 (2016). 
  66. 66. S. Yang, C. Han, X. Wang, and M. Nagatsu, Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites, J. Hazard. Mater., 274, 46-52 (2014). 
  67. 67. D. Li, D. I. Kaplan, A. S. Knox, K. P. Crapse, and D. P. Diprete, Aqueous 99Tc, 129I and 137Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents, J. Environ. Radioact., 136, 56-63 (2014). 
  68. 68. H. Long, P. Wu, L. Yang, Z. Huang, N. Zhu, and Z. Hu, Efficient removal of cesium from aqueous solution with vermiculite of enhanced adsorption property through surface modification by ethylamine, J. Colloid Interface Sci., 428, 295-301 (2014). 
  69. 69. B. Pangeni, H. Paudyal, K. Inoue, K. Ohto, H. Kawakita, and S. Alam, Preparation of natural cation exchanger from persimmon waste and its application for the removal of cesium from water, Chem. Eng. J., 242, 109-116 (2014). 
  70. 70. A. E. Ofomaja, A. Pholosi, and E. B. Naidoo, Kinetics and competitive modeling of cesium biosortion onto chemically modified pine cone powder, J. Taiwan Inst. Chem. Eng., 44, 943-951 (2013). 
  71. 71. A. G. Al Lafi and J. Al Abdullah, Cesium and cobalt adsorption on synthetic nano manganese oxide: A two dimensional infra-red correlation spectroscopic investigation, J. Mol. Struct., 1093, 13-23 (2015). 
  72. 72. K. Qin, F. Li, S. Xu, T. Wang, and C. Liu, Sequential removal of phosphate and cesium by using zirconium oxide: A demonstration of designing sustainable adsorbents for green water treatment, Chem. Eng. J., 322, 275-280 (2017). 
  73. 73. R. Cortes-Martinez, M. T. Olguin, and M. Solache-Rios, Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems, Desalination, 258, 164-170 (2010). 
  74. 74. C. K. Kim, J. Y. Kong, B. S. Chun, and J.-W. Park, Radioactive removal by adsorption on Yesan clay and zeolite, Environ. Earth Sci., 68, 2393-2398 (2013). 
  75. 75. H. Y. Lee, H. S. Kim, H.-K. Jeong, M. Park, D.-Y. Chung, K.-Y. Lee, E.-H. Lee, and W. T. Lim, Selective removal of radioactive cesium from nuclear waste by zeolites: On the origin of cesium selectivity revealed by systematic crystallographic studies, J. Phys. Chem. C, 121, 10594-10608 (2017). 
  76. 76. C. Dwivedi, A. Kumar, J. K. Ajish, K. Kant Singh, M. Kumar, P. Kishen Wattal, and P. Nand Bajaj, Resorcinol - formaldehyde coated XAD resin beads for removal of cesium ions from radioactive waste: synthesis, sorption and kinetic studies, RSC Adv., 2, 5557-5564 (2012). 
  77. 77. Z. Majidnia and A. Idris, Evaluation of cesium removal from radioactive waste water using maghemite PVA-alginate beads, Chem. Eng. J., 262, 372-382 (2015). 
  78. 78. H.-R. Yu, J.-Q. Hu, Z. Liu, X.-J. Ju, R. Xie, W. Wang, and L.-Y. Chu, Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment, J. Hazard. Mater., 323, 632-640 (2017). 
  79. 79. V. Kumar, J. N. Sharma, P. V. Achuthan, D. K. Singh, and S. M. Ali, A new bisglycolamide substituted calix[4]arene-benzo-crown-6 for the selective removal of cesium ion: combined experimental and density functional theoretical investigation, RSC Adv., 6, 47120-47129 (2016). 
  80. 80. S. Sakamoto and Y. Kawase, Adsorption capacities of poly- ${\gamma}$ -glutamic acid and its sodium salt for cesium removal from radioactive wastewaters, J. Environ. Radioact., 165, 151-158 (2016). 
  81. 81. K. Seaton, I. Little, C. Tate, R. Mohseni, M. Roginskaya, V. Povazhniy, and A. Vasiliev, Adsorption of cesium on silica gel containing embedded phosphotungstic acid, Microporous Mesoporous Mater., 244, 55-66 (2017). 
  82. 82. M. R. Awual, T. Yaita, T. Taguchi, H. Shiwaku, S. Suzuki, and Y. Okamoto, Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent, J. Hazard. Mater., 278, 227-235 (2014). 
  83. 83. M. R. Awual, Y. Miyazaki, T. Taguchi, H. Shiwaku, and T. Yaita, Encapsulation of cesium from contaminated water with highly selective facial organic-inorganic mesoporous hybrid adsorbent, Chem. Eng. J., 291, 128-137 (2016). 
  84. 84. M. R. Awual, Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater, Chem. Eng. J., 303, 539-546 (2016). 
  85. 85. J. Ahn, N. Y. Lim, J. S. Park, Y. Choi, and J. H. Jung, Fabrication of calix[4]arene-attached mesoporous ammonium molybdophosphate-silica hybrid and its application as an adsorbent for cesium ions, New J. Chem., 41, 3196-3203 (2017). 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

이 논문과 연관된 기능

DOI 인용 스타일

"" 핵심어 질의응답