$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Analysis of Microbiota in Bellflower Root, Platycodon grandiflorum, Obtained from South Korea 원문보기

Journal of microbiology and biotechnology, v.28 no.4, 2018년, pp.551 - 560  

Kim, Daeho (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University) ,  Hong, Sanghyun (Department of Animal Resources Science, Dankook University) ,  Na, Hongjun (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University) ,  Chun, Jihwan (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University) ,  Guevarra, Robin B. (Department of Animal Resources Science, Dankook University) ,  Kim, You-Tae (Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University) ,  Ryu, Sangryeol (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and) ,  Kim, Hyeun Bum Lee, Ju-Hoon

Abstract AI-Helper 아이콘AI-Helper

Bellflower root (Platycodon grandiflorum), which belongs to the Campanulaceae family, is a perennial grass that grows naturally in Korea, northeastern China, and Japan. Bellflower is widely consumed as both food and medicine owing to its high nutritional value and potential therapeutic effects. Sinc...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Therefore, the aim of this study was to investigate the bacterial community associated with bellflower roots from five South Korean farms between March and September of 2016. Bacterial communities of each bellflower root sample were analyzed using the 454 GS-FLX Titanium pyrosequencing system.

가설 설정

  • In this study, we investigated the microbial community structure of bellflower roots. Although further studies will be required to determine whether the identified species are associated with foodborne illness, our results indicate that 16S rRNA gene-based sequencing approach can be used to detect pathogenic bacteria on fresh vegetables.
본문요약 정보가 도움이 되었나요?

참고문헌 (54)

  1. Jeong CH, Choi GN, Kim JH, Kwak JH, Kim DO, Kim YJ, et al. 2010. Antioxidant activities from the aerial parts of Platycodon grandiflorum. Food Chem. 118: 278-282. 

  2. Nyakudya E, Jeong JH, Lee NK, Jeong YS. 2014. Platycosides from the roots of Platycodon grandiflorum and their health benefits. Prev. Nutr. Food Sci. 19: 59-68. 

  3. Park SJ, Al Mijan M, Song KB. 2014. Quality changes in Pteridium aquilinum and the root of Platycodon grandiflorum frozen under different conditions. Int. J. Refrig. 43: 90-96. 

  4. Lee JY, Hwang WI, Lim ST. 2004. Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A. De Candolle roots. J. Ethnopharmacol. 93: 409-415. 

  5. Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37: 634-663. 

  6. Panicker G, Call DR, Krug MJ, Bej AK. 2004. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Appl. Environ. Microbiol. 70: 7436-7444. 

  7. Chen J, Zhang LD, Paoli GC, Shi CL, Tu SI, Shi XM. 2010. A real-time PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis. Int. J. Food Microbiol. 137: 168-174. 

  8. Rahn K, De Grandis SA, Clarke RC, McEwen SA, Galan JE, Ginocchio C, et al. 1992. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes 6: 271-279. 

  9. Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P. 2013. Metagenomics for pathogen detection in public health. Genome Med. 5: 81. 

  10. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488: 86-90. 

  11. Asakura H, Tachibana M, Taguchi M, Hiroi T, Kurazono H, Makino SI, et al. 2016. Seasonal and growth-dependent dynamics of bacterial community in radish sprouts. J. Food Saf. 36: 392-401. 

  12. Leff JW, Fierer N. 2013. Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS One 8: e59310. 

  13. Tyler HL, Triplett EW. 2008. Plants as a habitat for beneficial and/or human pathogenic bacteria. Annu. Rev. Phytopathol. 46: 53-73. 

  14. Holden N, Pritchard L, Toth I. 2009. Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol. Rev. 33: 689-703. 

  15. Kaestli M, Schmid M, Mayo M, Rothballer M, Harrington G, Richardson L, et al. 2012. Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia. Environ. Microbiol. 14: 2058-2070. 

  16. Mikesell P, Ivins BE, Ristroph JD, Dreier TM. 1983. Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect. Immun. 39: 371-376. 

  17. Akopyanz N, Bukanov NO, Westblom TU, Kresovich S, Berg DE. 1992. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 20: 5137-5142. 

  18. Felske A, Engelen B, Nubel U, Backhaus H. 1996. Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl. Environ. Microbiol. 62: 4162-4167. 

  19. Samarakoon T, Wang SY, Alford MH. 2013. Enhancing PCR amplification of DNA from recalcitrant plant specimens using a trehalose-based additive. Appl. Plant Sci. 1: apps.1200236. 

  20. Ku HJ, Lee JH. 2014. Development of a novel long-range 16S rRNA universal primer set for metagenomic analysis of gastrointestinal microbiota in newborn infants. J. Microbiol. Biotechnol. 24: 812-822. 

  21. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. 

  22. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200. 

  23. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. 

  24. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. 

  25. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, et al. 2005. The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33: D294-D296. 

  26. Hojati Z, Zamanzad B, Hashemzadeh M, Molaie R, Gholipour A. 2015. The FimH gene in uropathogenic Escherichia coli strains isolated from patients with urinary tract infection. Jundishapur J. Microbiol. 8: e17520. 

  27. Tartof SY, Solberg OD, Riley LW. 2007. Genotypic analyses of uropathogenic Escherichia coli based on fimH single nucleotide polymorphisms (SNPs). J. Med. Microbiol. 56: 1363-1369. 

  28. Brumbaugh AR, Mobley HL. 2012. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine. Expert Rev. Vaccines 11: 663-676. 

  29. Norton EB, Lawson LB, Mahdi Z, Freytag LC, Clements JD. 2012. The A subunit of Escherichia coli heat-labile enterotoxin functions as a mucosal adjuvant and promotes IgG2a, IgA, and Th17 responses to vaccine antigens. Infect. Immun. 80: 2426-2435. 

  30. Wu M, Li X. 2015. Klebsiella pneumoniae and Pseudomonas aeruginosa, pp. 1547-1564. In Tang Y-W, Sussman M, Liu DY, Poxton I, Schwartzman J (eds.). Molecular Medical Microbiology, 2nd Ed. Vol. 3. Elsevier, Netherlands. 

  31. Van Delden C, Iglewski BH. 1998. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4: 551-560. 

  32. Ryan KJ, Ray CG, Sherris JC. 2004. Sherris Medical Microbiology: An Introduction to Infectious Diseases. Mc-Graw Hill, NY. 

  33. Hassett DJ, Cuppoletti J, Trapnell B, Lymar SV, Rowe JJ, Yoon SS, et al. 2002. Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv. Drug Deliv. Rev. 54: 1425-1443. 

  34. Reddy PP. 2014. Plant Growth Promoting Rhizobacteria for Horticultural Crop Protection. Springer, New Delhi. 

  35. Pal A. 2016. A comparative primary structure analysis of phosphofructokinase from different plant pathogenic bacteria. Int. J. Adv. Res. Biol. Sci. 3: 1-7. 

  36. Jun SR, Wassenaar TM, Nookaew I, Hauser L, Wanchai V, Land M, et al. 2015. Diversity of Pseudomonas genomes, including Populus-associated isolates, as revealed by comparative genome analysis. Appl. Environ. Microbiol. 82: 375-383. 

  37. Brodey CL, Rainey PB, Tester M, Johnstone K. 1991. Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Mol. Plant Microbe Interact. 4: 407-411. 

  38. Young JM. 1970. Drippy gill: a bacterial disease of cultivated mushrooms caused by Pseudomonas agarici n.sp. N. Z. J. Agric. Res. 13: 977-990. 

  39. Preston GM. 2004. Plant perceptions of plant growth-promoting Pseudomonas. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359: 907-918. 

  40. Mahlen SD. 2011. Serratia infections: from military experiments to current practice. Clin. Microbiol. Rev. 24: 755-791. 

  41. Cohen PS, Maguire JH, Weinstein L. 1980. Infective endocarditis caused by gram-negative bacteria: a review of the literature, 1945-1977. Prog. Cardiovasc. Dis. 22: 205-242. 

  42. Murdoch SL, Trunk K, English G, Fritsch MJ, Pourkarimi E, Coulthurst SJ. 2011. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J. Bacteriol. 193: 6057-6069. 

  43. Epstein E. 2015. Disposal and Management of Solid Waste Pathogens and Disease. Taylor Francis Group, LLC. Abingdon, UK. 

  44. Cruz AT, Cazacu AC, Allen CH. 2007. Pantoea agglomerans, a plant pathogen causing human disease. J. Clin. Microbiol. 45: 1989-1992. 

  45. Monier JM, Lindow SE. 2005. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb. Ecol. 49: 343-352. 

  46. Cunningham DJ, Marcon MJ. 2012. Enterobacter, Cronobacter, and Pantoea species, pp. 804-806. In Long S, Pickering L, Prober C (eds.). Principles and Practice of Pediatric Infectious Diseases, 4th Ed. Chpt. 140. Saunders Imprint, Philadelphia. 

  47. Nedwell DB. 1999. Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol. Ecol. 30: 101-111. 

  48. Watterworth L, Topp E, Schraft H, Leung KT. 2005. Multiplex PCR-DNA probe assay for the detection of pathogenic Escherichia coli. J. Microbiol. Methods 60: 93-105. 

  49. Wieler LH, Vieler E, Erpenstein C, Schlapp T, Steinruck H, Bauerfeind R, et al. 1996. Shiga toxin-producing Escherichia coli strains from bovines: association of adhesion with carriage of eae and other genes. J. Clin. Microbiol. 34: 2980-2984. 

  50. Vidotto MC, Gaziri LC, Delicato ER. 2004. Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis: correction. Vet. Microbiol. 102: 95-96. 

  51. Czeczulin JR, Collie RE, McClane BA. 1996. Regulated expression of Clostridium perfringens enterotoxin in naturally cpe-negative type A, B, and C isolates of C. perfringens. Infect. Immun. 64: 3301-3309. 

  52. Hansen BM, Hendriksen NB. 2001. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 67: 185-189. 

  53. Johnson WM, Tyler SD, Ewan EP, Ashton FE, Pollard DR, Rozee KR. 1991. Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J. Clin. Microbiol. 29: 426-430. 

  54. Csordas AT, Barak JD, Delwiche MJ. 2004. Comparison of primers for the detection of Salmonella enterica serovars using real-time PCR. Lett. Appl. Microbiol. 39: 187-193. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로